Abstract:
The present disclosure relates to a patterned retarder type display device having a black strip and a method for manufacturing the same. The present disclosure suggests a patterned retarder type display device comprising: a display panel having a plurality of unit pixel lines disposed in column direction, wherein each unit pixel line includes N (N is one of natural number) pixel lines; a patterned retarder film disposed on the outer surface of the display panel and including unit patterned retarders corresponding to each of the unit pixel lines; and a black strip disposed between two unit patterned retarders on the outer surface of the display panel. The display device according to the present disclosure provides excellent 3D viewing angle and the brightness dropdown caused by the black strip can be reduced.
Abstract:
A display panel and a display apparatus using the same are disclosed. A display panel includes a base substrate including a plurality of pixel regions having corresponding gate lines and data lines, and a plurality of pads arranged at an outer periphery of the base substrate. The display panel further includes a group of subminiature light emitting diodes (LEDs) in each of the pixel regions to display an image. The subminiature LEDs in one of the pixel regions are arranged at locations within the one of the pixel regions based on a location of the one of the pixel regions with respect to a center of the base substrate.
Abstract:
The present disclosure relates to a polarization film having a black strip for applying to a patterned retarder type 3D display device. The present disclosure suggests a polarization film for a patterned retarder type display device comprising: a polarization base film; a upper base film disposed on a upper surface of the polarization base film; a lower base film disposed on a lower surface of the polarization base film; and a black strip formed one of a upper side of the polarization base film and a lower side of the polarization base film. According to the present disclosure, the 3D display device can be manufactured in the simple processing and can reduce 3D cross-talk problem by having the double black strip structure.
Abstract:
A light-emitting device and a display including the same can improve the process stability during the process of disposing the light-emitting device. A light-emitting device includes the n-type semiconductor layer and the p-type semiconductor layer, and a structure is disposed so as to minimize electrical short between electrodes even if the light-emitting device is misaligned. The structure may have at least one side surface in an inverted taper shape and may be disposed between electrodes to minimize a short-circuit therebetween during the process of connecting the electrodes.
Abstract:
A polarization glasses type stereoscopic image display includes: a thin film transistor array substrate; a color filter array substrate having a plurality of black matrix patterns formed on a first plane facing the thin film transistor array substrate; a plurality of black stripe patterns that are aligned in a first direction correspondingly to the black matrix patterns on a second plane of the color filter array substrate opposite to the first plane; and a patterned retarder disposed over the second plane of the color filter array substrate. The width of the black stripe pattern is different depending on a display position with respect to the first direction. The first direction is directed from an upper side of the display to a lower side of the display.
Abstract:
A light-emitting device and a display including the same can improve the process stability during the process of disposing the light-emitting device. A light-emitting device includes the n-type semiconductor layer and the p-type semiconductor layer, and a structure is disposed so as to minimize electrical short between electrodes even if the light-emitting device is misaligned. The structure may have at least one side surface in an inverted taper shape and may be disposed between electrodes to minimize a short-circuit therebetween during the process of connecting the electrodes.
Abstract:
A stereoscopic image display and method is provided. The stereoscopic image display device includes: a thin film transistor array substrate, a color filter substrate facing the thin film transistor array substrate, the color filter substrate including a plurality of black matrices, a plurality of black stripes on the color filter substrate, each of the plurality of black stripes corresponding to the black matrices, and a patterned retarder film on the color filter array substrate over the black stripes, wherein at least one of the plurality of black stripes includes a first black pattern and a second black pattern that are spaced apart from each other, such that gaps are disposed therebetween.
Abstract:
A display device includes a substrate; a thin-film transistor including an active area, a source electrode, and a drain electrode disposed on the substrate; a passivation layer disposed on the thin-film transistor; a light-emitting device disposed on the passivation layer and including a first electrode, a second electrode, and a structure disposed between the first electrode and the second electrode; a planarization layer disposed on the passivation layer to cover a side surface of the light-emitting device; a pixel electrode electrically connected to the drain electrode of the thin-film transistor through a first contact hole in the passivation layer and the planarization layer, and electrically connected to the first electrode through a second contact hole in the planarization layer; and a common electrode electrically connected to the second electrode through a third contact hole formed in the planarization layer.
Abstract:
The present invention has been made in an effort to provide a stereoscopic image display comprising: a liquid crystal panel comprising a lower substrate and an upper substrate; RGB color filters positioned on a first surface of the upper substrate; thin film transistors positioned on a first surface of the lower substrate; a black matrix positioned on a second surface of the upper substrate; and a patterned retarder film for separating an image displayed on the liquid crystal panel, wherein at least one of the RGB color filters has a dummy part overlapping at least a portion of one or both of the other color filters.
Abstract:
A polarization glasses type stereoscopic image display displaying a stereoscopic image on a display surface includes a thin film transistor array substrate, a color filter array substrate having a plurality of black matrix patterns formed on a first plane facing the thin film transistor array substrate, a plurality of black stripe patterns that are aligned correspondingly to the black matrix patterns on a second plane of the color filter array substrate opposite to the first plane, and a patterned retarder disposed over the second plane of the color filter array substrate. The overall vertical pitch of the patterned retarder is less than the overall vertical pitch of a pixel array formed on the display surface.