Abstract:
A nitride semiconductor power device includes an AlGaN multilayer, which has changeable Al composition along a depositing direction, and SixNy layer, so as to minimize an increase in a leakage current and a decrease in a breakdown voltage, which are caused while fabricating a heterojunction type HFET device. A semiconductor device includes a buffer layer, an AlGaN multilayer formed on the buffer layer, a GaN channel layer formed on the AlGaN multilayer, and an AlGaN barrier layer formed on the AlGaN multilayer, wherein aluminum (Al) composition of the AlGaN multilayer changes along a direction that the AlGaN multilayer is deposited.
Abstract:
This specification is directed to a semiconductor device capable of reducing a leakage current by forming a first GaN layer including a plurality of GaN layers and FexNy layers interposed between the plurality of GaN layers, in a semiconductor device having the first GaN layer, an AlGaN layer, a second GaN layer, a gate electrode, a source electrode and a drain electrode which are deposited in a sequential manner, and a fabricating method thereof.To this end, a semiconductor device according to one exemplary embodiment includes a first GaN layer, an AlGaN layer on the first GaN layer, a second GaN layer on the AlGaN layer, and a source electrode, a drain electrode and a gate electrode formed on a partial area of the second GaN layer, wherein the first GaN layer comprises a plurality of GaN layers and FexNy layers interposed between the plurality of GaN layers.
Abstract:
This specification is directed to a semiconductor device capable of reducing a leakage current by forming a first GaN layer including a plurality of GaN layers and FexNy layers interposed between the plurality of GaN layers, in a semiconductor device having the first GaN layer, an AlGaN layer, a second GaN layer, a gate electrode, a source electrode and a drain electrode which are deposited in a sequential manner, and a fabricating method thereof.To this end, a semiconductor device according to one exemplary embodiment includes a first GaN layer, an AlGaN layer on the first GaN layer, a second GaN layer on the AlGaN layer, and a source electrode, a drain electrode and a gate electrode formed on a portion of the second GaN layer, wherein the first GaN layer comprises a plurality of GaN layers and FexNy layers interposed between the plurality of GaN layers.
Abstract:
This specification relates to an enhancement-type semiconductor device having a passivation layer formed using a photoelectrochemical (PEC) method, and a fabricating method thereof.To this end, a semiconductor device according to one exemplary embodiment includes a GaN layer, an AlGaN layer formed on the GaN layer, a p-GaN layer formed on the AlGaN layer, a gate electrode formed on the p-GaN layer, a source electrode and a drain electrode formed on a partial region of the AlGaN layer, and a passivation layer formed on a partial region of the AlGaN layer, the passivation layer formed between the source electrode and the gate electrode or between the gate electrode and the drain electrode, wherein the passivation layer is formed in a manner of oxidizing a part of the p-GaN layer.
Abstract:
A semiconductor device including a first GaN layer, an AlGaN layer, a second GaN layer, a gate electrode, a source electrode, and a drain electrode sequentially stacked on a substrate, capable of improving a leakage current and a breakdown voltage characteristics generated in the gate electrode by locally forming a p type GaN layer on the AlGaN layer, and a manufacturing method thereof, and a manufacturing method thereof are provided. The semiconductor device includes: a substrate, a first GaN layer formed on the substrate, an AlGaN layer formed on the first GaN layer, a second GaN layer formed on the AlGaN layer and including a p type GaN layer, and a gate electrode formed on the second GaN layer, wherein the p type GaN layer may be in contact with a portion of the gate electrode.