Abstract:
In some embodiments, an analyte detection system is provided that includes a nanochannel, an electrode arrangement, and a plurality of nanoFET devices disposed in the nanochannel. A plurality of nucleic acid base detection components can be used that include a plurality of nanopores, a plurality of nanochannels, a plurality of hybridization probes, combinations thereof, and the like. According to other embodiments of the present teachings, different coded molecules are hybridized to a target DNA molecule and used to detect the presence of various sequences along the target molecule. A kit including mixtures of coded molecules is also provided. In some embodiments, devices including nanochannels, nanopores, and the like, are used for manipulating movement of DNA molecules, for example, in preparation for a DNA sequencing detection. Nanopore structures and methods of making the same are also provided as are methods of nucleic acid sequencing using the nanopore structures. Surface-modified nanopores are provided as are methods of making them. In some embodiments, surfaced-modified nanopores for slowing the translocation of single stranded DNA (ssDNA) through the nanopore are provided, as are nanopores configured to detect each of a plurality of different bases on an ssDNA strand.
Abstract:
Methods and kits for preparing nucleic acid fragments from a sample of purified nucleic acid are provided. Alternatively, chromatin or other long polymers can be sheared with similar methods and kits.
Abstract:
Methods and kits for preparing nucleic acid fragments from a sample of purified nucleic acid are provided. Alternatively, chromatin or other long polymers can be sheared with similar methods and kits.
Abstract:
Methods and kits for preparing nucleic acid fragments from a sample of purified nucleic acid are provided. Alternatively, chromatin or other long polymers can be sheared with similar methods and kits.
Abstract:
In some embodiments, an analyte detection system is provided that includes a nanochannel, an electrode arrangement, and a plurality of nanoFET devices disposed in the nanochannel. A plurality of nucleic acid base detection components can be used that include a plurality of nanopores, a plurality of nanochannels, a plurality of hybridization probes, combinations thereof, and the like. According to other embodiments of the present teachings, different coded molecules are hybridized to a target DNA molecule and used to detect the presence of various sequences along the target molecule. A kit including mixtures of coded molecules is also provided. In some embodiments, devices including nanochannels, nanopores, and the like, are used for manipulating movement of DNA molecules, for example, in preparation for a DNA sequencing detection. Nanopore structures and methods of making the same are also provided as are methods of nucleic acid sequencing using the nanopore structures. Surface-modified nanopores are provided as are methods of making them. In some embodiments, surfaced-modified nanopores for slowing the translocation of single stranded DNA (ssDNA) through the nanopore are provided, as are nanopores configured to detect each of a plurality of different bases on an ssDNA strand.