摘要:
A memory cell system is provided including forming a first insulator layer over a semiconductor substrate, forming a charge trap layer over the first insulator layer, forming a second insulator layer over the charge trap layer, forming a top blocking intermediate layer over the second insulator layer, and forming a contact layer over the top blocking intermediate layer.
摘要:
A memory cell system is provided including forming a first insulator layer over a semiconductor substrate, forming a charge trap layer over the first insulator layer, forming a second insulator layer over the charge trap layer, forming a top blocking intermediate layer over the second insulator layer, and forming a contact layer over the top blocking intermediate layer.
摘要:
A memory cell system is provided including forming a first insulator layer over a semiconductor substrate, forming a charge trap layer over the first insulator layer, and slot plane antenna plasma oxidizing the charge trap layer for forming a second insulator layer.
摘要:
A memory cell system is provided including a first insulator layer over a semiconductor substrate, a charge trap layer over the first insulator layer, and slot where the charge trap layer includes a second insulator layer having the characteristic of being grown.
摘要:
A method for forming an integrated circuit system is provided including forming a substrate having a core region and a periphery region, forming a charge storage stack over the substrate in the core region, forming a gate stack with a stack header having a metal portion over the substrate in the periphery region, and forming a memory system with the stack header over the charge storage stack.
摘要:
A memory system includes a substrate, forming a first insulator over the substrate, forming a charge trap layer, having a composition for setting a predetermined electrical charge level, over the first insulator, and forming a second insulator over the charge trap layer.
摘要:
A method for fabricating a memory device with a self-aligned trap layer and rounded active region corners is disclosed. In the present invention, an STI process is performed before any of the charge-trapping and top-level layers are formed. Immediately after the STI process, the sharp corners of the active regions are exposed. Because these sharp corners are exposed at this time, they are available to be rounded through any number of known rounding techniques. Rounding the corners improves the performance characteristics of the memory device. Subsequent to the rounding process, the charge-trapping structure and other layers can be formed by a self-aligned process.
摘要:
An embodiment of the present invention is directed to a method of forming a memory cell. The method includes etching a trench in a substrate and filling the trench with an oxide to form a shallow trench isolation (STI) region. A portion of an active region of the substrate that comes in contact with the STI region forms a bitline-STI edge. The method further includes forming a gate structure over the active region of the substrate and over the STI region. The gate structure has a first width substantially over the center of the active region of the substrate and a second width substantially over the bitline-STI edge, and the second width is greater than the first width.
摘要:
An embodiment of the present invention is directed to a method of forming a memory cell. The method includes etching a trench in a substrate and filling the trench with an oxide to form a shallow trench isolation (STI) region. A portion of an active region of the substrate that comes in contact with the STI region forms a bitline-STI edge. The method further includes forming a gate structure over the active region of the substrate and over the STI region. The gate structure has a first width substantially over the center of the active region of the substrate and a second width substantially over the bitline-STI edge, and the second width is greater than the first width.
摘要:
A semiconductor memory device may include an intergate dielectric layer of a high-K, high barrier height dielectric material interposed between a charge storage layer and a control gate. With this intergate high-K, high barrier height dielectric in place, the memory device may be efficiently erased using Fowler-Nordheim tunneling.