摘要:
Disclosed herein is a multichip package comprising an optoelectronics assembly; a socket that houses the optoelectronics assembly; the socket being in electrical communication with the optoelectronics assembly; a plate having a first surface and a second surface; the first surface being opposedly disposed to the second surface; a portion of the first surface contacting a portion of the socket to provide thermal contact between the socket and the plate; a serpentine channel being disposed between the plate and the socket to provide a passage for a communication cable that is in operative communication with the optoelectronics assembly; and a heat exchanger in thermal contact with the plate; the heat exchanger being operative to cool the multichip package.
摘要:
Disclosed herein is a multichip package comprising an optoelectronics assembly; a socket that houses the optoelectronics assembly; the socket being in electrical communication with the optoelectronics assembly; a plate having a first surface and a second surface; the first surface being opposedly disposed to the second surface; a portion of the first surface contacting a portion of the socket to provide thermal contact between the socket and the plate; a serpentine channel being disposed between the plate and the socket to provide a passage for a communication cable that is in operative communication with the optoelectronics assembly; and a heat exchanger in thermal contact with the plate; the heat exchanger being operative to cool the multichip package.
摘要:
An integrated optical I/O and semiconductor chip with a direct liquid jet impingement cooling assembly are disclosed. Contrary to other solutions for packaging an optical I/O with a semiconductor die, this assembly makes use of a metal clad fiber, e.g. copper, which will actually enhance cooling performance rather than create a design restriction that has the potential to limit cooling capability.
摘要:
An integrated optical I/O and semiconductor chip with a direct liquid jet impingement cooling assembly are disclosed. Contrary to other solutions for packaging an optical I/O with a semiconductor die, this assembly makes use of a metal clad fiber, e.g. copper, which will actually enhance cooling performance rather than create a design restriction that has the potential to limit cooling capability.
摘要:
An integrated optical I/O and semiconductor chip with a direct liquid jet impingement cooling assembly are disclosed. Contrary to other solutions for packaging an optical I/O with a semiconductor die, this assembly makes use of a metal clad fiber, e.g. copper, which will actually enhance cooling performance rather than create a design restriction that has the potential to limit cooling capability.
摘要:
A first cluster includes first switching devices that are compatible with a software-defined networking (SDN) protocol. A second cluster includes second switching devices within or partially overlapping the first cluster. Each second switching device is compatible with a protocol for an open systems interconnection (OSI) model layer. The first switching devices include one or more border switching devices located at a boundary between the first cluster and the second cluster. Each border switching device is also compatible with the protocol for the OSI model layer. The first switching devices effect first multipathing through the network except through the second cluster, and the second switching devices effect second multipathing just through the second cluster of the network. As such, the first switching devices and the second switching devices together effect end-to-end multipathing through both the first cluster and the second cluster of the network.
摘要:
A method and system for enhanced demolding of injection molded optical devices are disclosed. In one embodiment the system includes a metal moldplate without a coat of release layer and a curing device that generates high intensity pulses of UV light. The method includes: providing a moldplate made of a predetermined moldplate material; directly injecting optical material into cavities of a moldplate without a release layer; rapidly curing the injected optical material with high intensity pulses of UV light such that a predetermined optical device is formed; and separating the thus formed optical device from the cavities of the moldplate due to a differential thermal expansion between the optical device material and the moldplate material.
摘要:
A system to improve a Converged Enhanced Ethernet network may include a controller having a computer processor connected to a layer 2 endpoint buffer. The system may also include a manager executing on the controller to monitor the layer 2 endpoint buffer by determining buffer data packet occupancy and/or rate of change in the buffer data packet occupancy. The system may further include a reporter to notify a congestion source of the layer 2 endpoint buffer based upon the buffer data packet occupancy and/or rate of change in the buffer data packet occupancy.
摘要:
An improved computer system that can include a controller having a computer processor, the controller to reduce insertion times and/or collisions when interfacing with new components introduced to the controller. The system may also include a collision avoidance apparatus that reduces hashing collisions by using a plurality of tables and a plurality of keys per bucket. The system may further include a hash apparatus in communication with the controller to map the plurality of keys to the plurality of tables where the hash apparatus uses a single hash logic to provide an avalanche effect when one key is changed which results in nearly half of bits changing in the plurality of tables.
摘要:
A method to manage data congestion in a computer network may include network devices to route data packets throughout the network. The method may also include a source node that sends data packets to any of the network devices. The method may further include a routing table at each network device that is updated by the source node, and the route the data packets are sent by any network device is based upon each respective routing table.