摘要:
A capacitive deionization (CDI) system for deionizing water is disclosed. The CDI system comprises at least a flow through capacitor (FTC) module, at least a first supercapacitor, at least a second supercapacitor, at least a third supercapacitor and a controller. The FTC module comprises a plurality electrodes for removing ions from water flowing between the electrodes under an electric field applied between the electrodes. The first supercapacitor is connected between the potential source and the FTC module for amplifying energy provided by the potential source. The second supercapacitor is connected to the FTC module for receiving energy from the FTC module for regenerating the electrodes of the FTC module. The third supercapacitor is adapted for exchanging energy with the FTC module for regenerating the electrodes of the FTC module. The controller is adapted for regulating deionization rate of the water and regeneration of the electrodes of the FTC module.
摘要:
A pocket-size ozone generator for in-situ sterilization of water is disclosed. The pocket-size ozone generator comprises a power source, at least a supercapacitor, a switching circuit and at least a pair of electrodes. The power source is adapted for providing a reaction energy to generate ozone gas within the water to be treated. The supercapacitor is adapted for amplifying the reaction energy provided by the power source. The circuitry is adapted for controlling the supercapacitor to deliver consistent power supply to generate ozone. The electrodes are adapted for receiving the amplified reaction energy from the supercapacitor to generate ozone within the water to be treated.
摘要:
An energy-reclamation apparatus of the present invention including at least a supercapacitor element connected with a charging source and a controlled circuit. After the supercapacitor element is charged to the potential of the charging source, the supercapacitor element and the charging source will work in series to conduct a repetitive polarity reversal of the supercapacitor element through a controlled circuit. As the supercapacitor element discharges, it is reversely charged concurrently. In other words, while the voltage of the supercapacitor element is decreasing on the side, a negative potential is complementarily developing on the other side. By repeatedly reversing the polarity of the supercapacitor element, more energy from the serially connected charging source can be reclaimed and reused.
摘要:
The present invention relates to a bipolar element for energy storage, which facilitates the manufacturing thereof with high working voltage. The bipolar element for energy storage includes two end electrodes with a dedicated means for connecting to a potential source; at least one intervening electrode disposed between the said end electrodes wherein the said intervening electrode has no connection to a potential source; and a separator disposed after each electrode for concentrically winding the said electrodes and separators into a jelly roll; or a separator disposed between every two electrode for stacking the said electrode and separator into a prismatic form; an organic electrolyte solution is added to the said separators for storing energy with a potential applied to the said end electrodes by the said power supply, wherein the bipolar element is partially sealed. The said assemblies of making high voltage supercapacitors in single units or modules can facilitate the usage of the devices as power managers in high power applications for automobiles, power tools, machineries and automatic system.
摘要:
An ozone generator for in-situ sterilization of water, which may be pocket-sized, is disclosed. The ozone generator includes a power source, at least a supercapacitor, a switching circuitry and at least a pair of electrodes. The power source is adapted for providing a reaction energy to generate ozone gas within the water to be treated. The supercapacitor is adapted for amplifying the reaction energy provided by the power source. The circuitry is adapted for controlling the supercapacitor to deliver consistent power supply to generate ozone. The electrodes are adapted for receiving the amplified reaction energy from the supercapacitor to generate ozone within the water to be treated.
摘要:
Deionizers using the electrode configurations of electrochemical capacitors are described, wherein the deionizing process is called capacitive deionization (CDI). During deionization, a DC electric field is applied to the cells and ions are adsorbed on the electrodes with a potential being developed across the electrodes. As electrosorption reaches a maximum or the cell voltage is built up to the applied voltage, the CDI electrodes are regenerated quickly and quantitatively by energy discharge to storage devices such as supercapacitors. In conjunction with a carousel or Ferris wheel design, the CDI electrodes can simultaneously and continuously undergo deionization and regeneration. By the responsive regeneration, the CDI electrodes can perform direct purification on solutions with salt content higher than seawater. More importantly, electrodes are restored, energy is recovered and contaminants are retained at regeneration, while regeneration requires no chemicals and produces no pollution.
摘要:
Using thin-films of iron oxide as the active material of electrodes, supercapacitors are fabricated on various substrates in different shapes. By chemical oxidation the iron-oxide film is formed directly and conformably on the substrates in a short period of cooking. The iron oxide has a chemical composition of FexOyHz, where 1.0≦x≦3.0, 0.0≦y≦4.0, and 0.0≦z≦1.0. Substrates, as the current collector, tested includes Al, Ti, Fe, Cu and Ni. Measurements by cyclic voltammetry indicates that the iron-oxide electrodes in a selected electrolyte can store charges as high as 0.5 F/cm2 or 417 F/g of the electrode materials. Supercapacitors as prepared are economical and can be used as enclosure housings for portable electronics, power tools, and batteries. The supercapacitors can also be integrated with the frames and chassis of electric vehicles.
摘要翻译:使用氧化铁薄膜作为电极的活性材料,在不同形状的各种基板上制造超级电容器。 通过化学氧化,氧化铁膜在短时间的烹饪中直接且顺应地形成在基板上。 氧化铁具有FexOyHz的化学组成,其中1.0 <= x <= 3.0,0.0 <= y <= 4.0,0.0 <= z <= 1.0。 作为集电器的基板被测试包括Al,Ti,Fe,Cu和Ni。 通过循环伏安法进行的测量表明,所选择的电解质中的氧化铁电极可以存储高达0.5F / cm 2或417F / g电极材料的电荷。 制备的超级电容器是经济的,可用作便携式电子设备,电动工具和电池的外壳。 超级电容器也可以与电动车辆的框架和底盘集成。
摘要:
A free-standing flow-through capacitor (FTC) is constructed by concentrically winding two electrodes and two dividers into a hollow-center roll. A liquid-feeding pipe is inserted to the central opening for delivering fluids to the FTC. Nanoparticles of hydrated iron compound with Fe3O4 as the main component or its composite powders are used as the active materials for the electrodes. With channels crated by the dividers assembled in the roll, fluids injected from the feed pipe are confined inside the FTC, and flow outwardly and transversely through the entire length of the electrodes. Under an application of a low DC voltage to the electrodes, charged species are adsorbed and removed from the treated liquids as soon as they are in contact with the electrodes. Capacitive deionization using FTC of the present invention is applicable to waste-streams reduction, water purification and desalination at low costs and easy operation.
摘要:
A plurality of supercapacitor elements is arranged in rows and columns within a single housing. The elements have no physical connection until they are configured into series, parallel or combinatory matrix by a configuration circuit composing of switches, a driver and a controller. Under the manipulation of the configuration circuit, the elements can be assembled in a broad voltage range to deliver the desired powers to automobiles, heavy machineries, power tools, appliances, or consumer electronics in real-time responses. When the loads present energy for recovery, the elements can also be immediately grouped in the voltage and capacity ranges corresponding to the power levels of the energy to be harvested. Using the present invention, the efficiency of DC and AC energy utilization can be significantly improved.
摘要:
A chemical-free and no-microbe method for pre-treating a broad range of waste waters is presented. The said method involves electrocoagulation (EC) operated in synchronization with electrolytic ozone (EO3). In the combinatory method, each technique not only applies its own treatments, they also create synergistic effects from real-time reactions among the reagents generated by electrolysis. Two refractory waste waters, seawater and tannery effluent, are tested by the combinatory method, EC+EO3, to assess the viability of the said method. Without adjustment, each of the said waste waters is remedied by EC+EO3 from its raw state to a clean condition more effectively and more economically than that can be delivered by the respective prevailing processes of pretreatment for each of the said waste waters.