摘要:
A solid-state hydroxide (OH−) conductive membrane provides up to five times higher ionic conductivity and surface oxygen exchange rate than conventional MIEC membranes, while operating at significantly lower temperatures and providing reduced overall system cost. The hydroxide conductive membrane utilizes a porous ceramic backbone, pores of which are injected with an electrolyte. A catalyst is provided as discrete layers disposed at the anode and cathode. The membrane of the present invention may be utilized in combination with an external voltage source to drive the oxygen generating reaction. Alternatively, the pores may be metallized and a pressure gradient utilized to drive the reaction. The membrane thus provides discrete materials to provide ionic conduction, electronic conduction, and structural support.
摘要:
A highly conductive polymer based solid gel membrane is disclosed. The membrane is especially well suited for use in such electrochemical devices as, for example, aluminum/air, zinc/air, Zn/MnO2, Ni/Cd and hydrogen fuel cells, as well as in electrochromic devices such as smart windows and flat panel displays. In accordance with the principles of the invention, anion- and cation-conducting membranes are formed. The gel composition of the membrane contains the ionic species within its solution phase such that the species behaves as in a liquid electrolyte, while at the same time, the solid gel composition prevents the solution phase from diffusing into the device. Methods of forming polymer based solid gel membranes of the present invention are also disclosed.
摘要:
A polymer-based electrolyte composition having excellent film-forming properties, flexibility, mechanical strength and high hydroxide conductivity is disclosed. The composition comprises an organic polymer having an alkyl quaternary ammonium salt structure; a nitrogen-containing, heterocyclic quaternary ammonium salt; and a metal hydroxide salt. In a preferred embodiment, the composition is cast in the form of a film that is suitable for use as an ion-conducting or other specialty membrane in a power source, such as for example an alkaline battery or fuel cell, that relies on hydroxide anion transport for its operation.
摘要:
In an air-metal fuel cell battery (FCB) system, wherein metal-fuel tape, the ionically-conductive medium and the cathode structures are transported at substantially the same velocity at the locus of points at which the ionically-conductive medium contacts the moving cathode structure and the moving metal-fuel tape during discharging and recharging modes of operation. In a first generalized embodiment of the present invention, the ionically-conductive medium is realized as an ionically-conductive belt, and the metal-fuel tape, ionically-conductive belt, and movable cathode structure are transported at substantially the same velocity at the locus of points which the ionically-conducing belt contacts the metal-fuel tape and the cathode structure during system operation. In a second generalized embodiment of the present invention, the ionically-conductive medium is realized as a solid-state (e.g. gelatinous) film layer integrated with the metal-fuel tape. In a third generalized embodiment of the present invention, the ionically-conductive medium is realized as a solid-state film layer integrated with the movable cathode structure. By transporting the movable cathode structure, ionically contacting medium and metal-fuel tape within the system as described above, generation of frictional forces among such structures are minimized during system operation, and thus the damage to the cathode structure and metal-fuel tape is substantially reduced.
摘要:
In an air-metal fuel cell battery (FCB) system, wherein a movable cathode structure is mounted within a housing through which metal-fuel tape is transported along a predetermined path while an ionically-conductive medium is disposed between the metal-fuel tape and the movable cathode structure. In illustrative embodiments, the movable cathode structure is realized as a rotatable cathode cylinder, and a transportable cathode belt. The ionically-conductive medium is realized as a solid-state ionically-conductive film applied to the cathode structures and/or metal-fuel tape, as well as ionically-conductive belt structures. During system operation, the metal-fuel tape and/or the ionically-conductive medium are wetted in order create sufficient surface tension, and thus sufficient hydrostatic forces, between the metal-fuel tape and ionically-conductive medium and between the ionically-conductive medium and the movable cathode structure, to enable the movable cathode structure, ionically-conductive medium and metal-fuel tape to move at substantially the same velocity at points of contact therebetween while only one or these three moving system components are being actively driven by a transport mechanism. By virtue of the present invention, it is possible to transport the moving components of the FCB system using a various types of low power devices including, for example, miniature electrical and spring-driven motors, while substantially reducing the likelihood of damage thereto during system operation.
摘要:
In an air-metal fuel cell battery (FCB) system, wherein metal-fuel tape, the ionically-conductive medium and the cathode structures are transported at substantially the same velocity at the locus of points at which the ionically-conductive medium contacts the moving cathode structure and the moving metal-fuel tape during discharging and recharging modes of operation. In a first generalized embodiment of the present invention, the ionically-conductive medium is realized as an ionically-conductive belt, and the metal-fuel tape, ionically-conductive belt, and movable cathode structure are transported at substantially the same velocity at the locus of points which the ionically-conducing belt contacts the metal-fuel tape and the cathode structure during system operation. In a second generalized embodiment of the present invention, the ionically-conductive medium is realized as a solid-state film layer integrated with the metal-fuel tape. In a third generalized embodiment of the present invention, the ionically-conductive medium is realized as a solid-state film layer integrated with the movable cathode structure. By transporting the movable cathode structure, ionically contacting medium and metal-fuel tape within the system as described above, generation of frictional forces among such structures are minimized during system operation, and thus the damage to the cathode structure and metal-fuel tape is substantially reduced.
摘要:
In an air-metal fuel cell battery (FCB) system, wherein metal-fuel tape, the ionically-conductive medium and the cathode structures are transported at substantially the same velocity at the locus of points at which the ionically-conductive medium contacts the moving cathode structure and the moving metal-fuel tape during discharging and recharging modes of operation. In a first generalized embodiment of the present invention, the ionically-conductive medium is realized as an ionically-conductive belt, and the metal-fuel tape, ionically-conductive belt, and movable cathode structure are transported at substantially the same velocity at the locus of points which the ionically-conducing belt contacts the metal-fuel tape and the cathode structure during system operation. In a second generalized embodiment of the present invention, the ionically-conductive medium is realized as a solid-state (e.g. gelatinous) film layer integrated with the metal-fuel tape, and the metal-fuel tape, ionically-conductive film layer and movable cathode structure are transported at substantially the same velocity at the locus of points which the ionically-conducing film layer contacts the metal-fuel tape and the cathode structure during system operation. In a third generalized embodiment of the present invention, the ionically-conductive medium is realized as a solid-state film layer integrated with the movable cathode structure, and the metal-fuel tape, ionically-conductive film layer and movable cathode structure are transported at substantially the same velocity at the locus of points which the ionically-conducing film layer contacts the metal-fuel tape and the cathode structure during system operation. By transporting the movable cathode structure, ionically contacting medium and metal-fuel tape within the system as described above, generation of frictional forces among such structures are minimized during system operation, and thus the damage to the cathode structure and metal-fuel tape is substantially reduced.
摘要:
In an air-metal fuel cell battery (FCB) system, wherein a plurality of movable cathode structures are mounted within a compact housing through which metal-fuel tape is transported along a predetermined path while an ionically-conductive medium is disposed between the metal-fuel tape and each movable cathode structure at points of contact. In illustrative embodiments, the movable cathode structures are realized as rotatable cathode cylinders, and transportable cathode belts. The ionically-conductive medium is realized as a solid-state ionically-conductive film applied to the cathode structures and/or metal-fuel tape, as well as ionically-conductive belt structures transported at the same velocity as corresponding cathode structures (e.g. cathode cylinders or belts) at the locus of points at which the ionically-conductive medium contacts the moving cathode structure and the moving metal-fuel tape. By virtue of the present invention, the volumetric power density characteristics of FCB systems can be significantly improved, while the likelihood of damage to the cathode structures and metal-fuel tape is substantially reduced.
摘要:
In an air-metal fuel cell battery (FCB) system, wherein metal-fuel tape, the ionically-conductive medium and the cathode structures are transported at substantially the same velocity at the locus of points at which the ionically-conductive medium contacts the moving cathode structure and the moving metal-fuel tape during discharging and recharging modes of operation. In a first generalized embodiment of the present invention, the ionically-conductive medium is realized as an ionically-conductive belt, and the metal-fuel tape, ionically-conductive belt, and movable cathode structure are transported at substantially the same velocity at the locus of points which the ionically-conducing belt contacts the metal-fuel tape and the cathode structure during system operation. In a second generalized embodiment of the present invention, the ionically-conductive medium is realized as a solid-state (e.g. gel-like) film layer integrated with the metal-fuel tape, and the metal-fuel tape, ionically-conductive film layer and movable cathode structure are transported at substantially the same velocity at the locus of points which the ionically-conducing film layer contacts the metal-fuel tape and the cathode structure during system operation. In a third generalized embodiment of the present invention, the ionically-conductive medium is realized as a solid-state film layer integrated with the movable cathode structure, and the metal-fuel tape, ionically-conductive film layer and movable cathode structure are transported at substantially the same velocity at the locus of points which the ionically-conducing film layer contacts the metal-fuel tape and the cathode structure during system operation. By transporting the movable cathode structure, ionically contacting medium and metal-fuel tape within the system as described above, generation of frictional forces among such structures are minimized during system operation, and thus the damage to the cathode structure and metal-fuel tape is substantially reduced.
摘要:
Flat plate fuel cells, particularly air-depolarized cells, are stacked and electrically interconnected into a battery structure with a connector block and tray. The anode and cathode elements of each cell are provided with extending terminal conductor elements (e.g., banana plugs), preferably extending in downward “U” shaped configuration from the upper ends of the anode and cathode elements respectively. The connector block comprises a series of conductive apertures, positioned and sized to accommodate the terminal conductor elements of the electrodes therein and the connector block comprises electrical interconductive elements to electrically connect- the electrodes of the stacked cells in a desired electrical interconnection (serial, parallel and mixed serial and parallel segments). The interconnection between terminal conductor elements and the respective apertures further serves to support and orient the cells in a minimal volume and permits selective rapid cell removal for replacement or servicing. The cells are also provided with keyed members for keyed interlocking with a support tray having co-fitting keying elements to provide full structural integrity for the stacked cells. Lateral end elements extend between the connector block and support tray to complete an open enclosure and provide a support base for air circulating devices such as fans. Air is circulated through a duct defined by the block and between the fuel cells.