摘要:
Hydrocarbon or oxygenate conversion process in which a feedstock is contacted with a non zeolitic molecular sieve which has been treated to remove most, if not all, of the halogen contained in the catalyst. The halogen may be removed by one of several methods. One method includes heating the catalyst in a low moisture environment, followed by contacting the heated catalyst with air and/or steam. Another method includes steam-treating the catalyst at a temperature from 400° C. to 1000° C. The hydrocarbon or oxygenate conversion processes include the conversion of oxygenates to olefins, the conversion of oxygenates and ammonia to alkylamines, the conversion of oxygenates and aromatic compounds to alkylated aromatic compounds, cracking and dewaxing.
摘要:
The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.
摘要:
Disclosed is a method of protecting the loss of catalytic activity of metalloaluminophosphate molecular sieve, particularly a SAPO molecular sieve, from contact with moisture. The method involves heating the metalloaluminophosphate molecular sieve so as to remove template, and provide a molecular sieve in sufficiently dry form for storage.
摘要:
The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.
摘要:
The invention is directed to methods of starting up reaction systems. The reaction systems are those that use catalysts that comprise molecular sieves, particularly metalloaluminophosphate molecular sieves, especially metalloaluminophosphate molecular sieves which are susceptible to loss of catalytic activity due to contact with water molecules. The methods provide appropriate mechanisms of heating and loading the activated molecular sieves to protect against loss of catalytic activity that can occur due to contact with water molecules.
摘要:
The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to a catalyst composition comprising a molecular sieve having a framework including at least [AlO4] and [PO4] tetrahedral units, at least one of a binder and a matrix material and at least one phosphorus compound separate from said molecular sieve wherein, after calcination at 760° C. for 3 hours, said catalyst composition has a microporous surface area in excess of 20% of the microporous surface area of said molecular sieve after calcination at 650° C. in nitrogen for 2 hours. The catalyst composition is particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
摘要:
The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to a catalyst composition comprising a molecular sieve having a framework including at least [AlO4] and [PO4] tetrahedral units, at least one of a binder and a matrix material and at least one phosphorus compound separate from said molecular sieve wherein, after calcination at 760° C. for 3 hours, said catalyst composition has a microporous surface area in excess of 20% of the microporous surface area of said molecular sieve after calcination at 650° C. in nitrogen for 2 hours. The catalyst composition is particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
摘要:
The invention provides a method for converting a hydrocarbon feedstock to propylene comprising: contacting an olefinic hydrocarbon feedstock boiling in the naphtha range with a catalyst comprising a zeolitic catalyst selected from the group consisting of medium pore zeolites having a ratio of silica to alumina above 200 and pore diameter less than 0.7 nm under cracking conditions to selectively produce propylene. The preferred catalyst comprises of a zeolite having an 8, 10, or 12 membered ring pore structure. The preferred catalysts are selected from the group consisting of zeolites from the families MFI, MEL, MTW, TON, MTT, FER, MFS, and the zeolites ZSM-21, ZSM-38 and ZSM-48. Preferably the method is carried out to produce propylene with greater than 50% specificity, more preferably, the propylene to butylene ratio is at least 2:1 or a propylene to ethylene ratio of at least 4:1. The olefinic hydrocarbon feedstock consists essentially of hydrocarbons boiling within the range of 18° to 220° C. (65° F. to 430° F.). The olefinic hydrocarbon feedstock comprises from about 10 wt % to about 70 wt % olefins. Preferably the olefinic hydrocarbon feedstock comprises from about 5 wt % to about 35 wt % paraffins. The catalyst is contacted in the range of 400° C. to 700° C., a weight hourly space velocity (“WHSV”) of 1 to 1,000 hr−1 and a pressure of 0.1 to 30 atm. absolute.
摘要:
The invention provides a process for improving the conversion of a hydrocarbon feedstock to light olefins comprising the steps of first contacting the hydrocarbon feedstock with a light olefin producing cracking catalyst and subsequently thermally cracking the unseparated stream to produce additional ethylene. Preferably the zeolite catalyst is selected from the group consisting of ferrierite, heulandite, phillipsite, faujasite, chabazite, erionite, mordenite, offretite, gmelinite, analcite, ZSM-5, ZSM-11, ZSM-25, gallium silicate zeolite, zeolite Beta, zeolite rho, ZK5, titanosilicate, zeolites having a silica to alumina molar ratio within the range of about 2.0:1 to 2000:1 ferrosilicate; zeolites such as those described in U.S. Pat. No. 4,238,318; borosilicate zeolites such as those described in Belgian Pat. No. 859656; zeolites designated by the Linde Division of Union Carbide by the letters of X, Y, A, L; zeolites such as those described in U.S. Pat. No. 5,552,035; and zeolites such as those described in U.S. Pat. No. 5,348,924. Preferably the catalyst is contacted at a temperature within the range of about 500.degree. C. to about 750.degree. C. and the feedstock flows at a weight hourly space velocity in the range of about 0.1 Hr.sup.-1 WHSV to about 100 Hr.sup.-1 WHSV. The trim thermal cracking is carried out between 650.degree. C. to 900.degree. C. for 0.1 to 20 seconds.
摘要:
New titanium zeolite Beta catalysts which have been found to be useful as catalysts for the oxidation of organic compounds using organic hydroperoxides as oxidation catalysts. They are particularly useful as ring opening oxidation catalysts and may be used to produce adipic acid from cyclohexane.