摘要:
A method for making semi-conductor nanocrystals, including at least the steps of: forming solid carbon chemical species on a semi-conductor thin layer provided on at least one dielectric layer, the dimensions and the density of the carbon chemical species formed on the semi-conductor thin layer being a function of the desired dimensions and density of the semi-conductor nanocrystals; annealing the semi-conductor thin layer, performing a dewetting of the semi-conductor and forming, on the dielectric layer, the semi-conductor nanocrystals.
摘要:
A method for making semi-conductor nanocrystals, including at least the steps of: forming solid carbon chemical species on a semi-conductor thin layer provided on at least one dielectric layer, the dimensions and the density of the carbon chemical species formed on the semi-conductor thin layer being a function of the desired dimensions and density of the semi-conductor nanocrystals; annealing the semi-conductor thin layer, performing a dewetting of the semi-conductor and forming, on the dielectric layer, the semi-conductor nanocrystals.
摘要:
A method for making a semi-conductor nanocrystals, including at least the steps of: making a stack of at least one uniaxially stressed semi-conductor thin layer and a dielectric layer, annealing the semi-conductor thin layer such that a dewetting of the semi-conductor forms, on the dielectric layer, elongated shaped semi-conductor nanocrystals oriented perpendicularly to the stress axis.
摘要:
A method produces a microstructure comprising an island of material confined between two electrodes forming barriers, the island (30) of material having lateral flanks running parallel to and lateral flanks running perpendicular to the barriers, wherein the lateral flanks of the island are defined by etching of at least one layer (16), called the template layer, and the barriers are formed by damascening. The method includes (a) a first etching of the template layer using a first etching mask having at least one filiform part, and (b) a second etching of the template layer, subsequent to the first etching, using a second etching mask also having at least one filiform part, oriented in a direction forming a non-zero angle with a direction of orientation of the filiform part of the first mask, in the vicinity of the site of formation of the island.
摘要:
A method for correcting astigmatism of an electronic optical column of an electron emission spectromicroscope, comprising the steps of: forming a reference structure on a surface of a sample comprising a structure of interest to be imaged, imaging the reference structure by the spectromicroscope with secondary electrons and with core level photoelectrons, eliminating astigmatism defects appearing during the imaging of the reference structure with secondary electrons and with core level photoelectrons, a material of the reference structure being chosen such that, during core level photoelectron imaging, the contrast C between the average intensity Ia of the material of the reference structure and the average intensity Ib of the material of the sample is such that: C = I a - I b I a + I b ≥ 0.2 .
摘要翻译:一种用于校正电子发射光谱显微镜的电子光学柱的散光的方法,包括以下步骤:在包含要成像的感兴趣结构的样品的表面上形成参考结构,用二次电子通过显微镜对参考结构进行成像 并且使用核心级光电子,消除在二次电子和核心级光电子参考结构成像期间出现的散光缺陷,参考结构的材料被选择为使得在核心级光电子成像期间,对比度C在平均强度 参考结构的材料1a和样品材料的平均强度Ib为:C = I a -I b I a + I b≥0.2。
摘要:
The invention relates to a nanofiber fabrication method comprising nanofiber growth from a catalyst zone, furthermore comprising the following steps: producing at least one micropattern (11) on the surface of a substrate (1); producing a catalyst zone (50) on the surface of said micropattern; nanofiber growth from the catalyst zone, characterized in that the micropattern (11) comprises a base, at least partially convergent side walls and an upper face, said base being covered with a so-called “poison” layer (4) where no nanofiber growth catalysis effect can take place, the so-called “poison” layer not being present on said upper face; the base being covered with a catalyst layer (5) on the surface of the so-called “poison” layer; the thickness of the “poison” layer and the thickness of the catalyst layer being such that the nanofibers cannot grow either on the side walls or on the base of the micropatterns constructed beforehand.
摘要:
The invention relates to a nanofiber fabrication method comprising nanofiber growth from a catalyst zone, furthermore comprising the following steps: producing at least one micropattern (11) on the surface of a substrate (1); producing a catalyst zone (50) on the surface of said micropattern; nanofiber growth from the catalyst zone, characterized in that the micropattern (11) comprises a base, at least partially convergent side walls and an upper face, said base being covered with a so-called “poison” layer (4) where no nanofiber growth catalysis effect can take place, the so-called “poison” layer not being present on said upper face; the base being covered with a catalyst layer (5) on the surface of the so-called “poison” layer; the thickness of the “poison” layer and the thickness of the catalyst layer being such that the nanofibers cannot grow either on the side walls or on the base of the micropatterns constructed beforehand.
摘要:
A method for correcting astigmatism of an electronic optical column of an electron emission spectromicroscope, comprising the steps of: forming a reference structure on a surface of a sample comprising a structure of interest to be imaged, imaging the reference structure by the spectromicroscope with secondary electrons and with core level photoelectrons, eliminating astigmatism defects appearing during the imaging of the reference structure with secondary electrons and with core level photoelectrons, a material of the reference structure being chosen such that, during core level photoelectron imaging, the contrast C between the average intensity Ia of the material of the reference structure and the average intensity Ib of the material of the sample is such that: C = I a - I b I a + I b ≥ 0.2 .
摘要翻译:一种用于校正电子发射光谱显微镜的电子光学柱的散光的方法,包括以下步骤:在包含要成像的感兴趣结构的样品的表面上形成参考结构,用二次电子通过显微镜对参考结构进行成像 并且使用核心级光电子,消除在二次电子和核心级光电子参考结构成像期间出现的散光缺陷,参考结构的材料被选择为使得在核心级光电子成像期间,对比度C在平均强度 参考结构的材料1a和样品材料的平均强度Ib为:C = I a -I b I a + I b≥0.2。