Abstract:
An integrated circuit includes a multilayer stack, and a plurality of layered conductors extending in the multilayer stack and into a conductor layer beneath the multilayer stack. The layered conductor has a bottom conductor layer in ohmic electrical contact with the conductive layer in a substrate, an intermediate conductive liner layer over the bottom conductor layer and lining a portion of sidewall of the corresponding trench, and a top conductor layer on the top conductive liner layer.
Abstract:
A semiconductor device is provided, which includes a first conductive layer disposed on a substrate, a dielectric layer with at least an opening disposed on the first conductive layer, and a plurality of plugs filling up the openings. At least a portion of the dielectric layer adjacent to the openings is Si-rich, and each of the plugs includes a second conductive layer surrounded by a barrier layer.
Abstract:
A semiconductor structure and a method for manufacturing the same are provided. The semiconductor structure comprises a conductive layer, a via, and a barrier layer disposed between the conductive layer and the via. The barrier layer is stuffed with oxygen.
Abstract:
A semiconductor structure and a method for manufacturing the same are provided. The semiconductor structure comprises a conductive layer, a via, and a barrier layer disposed between the conductive layer and the via. The barrier layer is stuffed with oxygen.
Abstract:
Provided is a word line structure including a substrate, a stack structure, and a metal silicide structure. The stack structure is disposed on the substrate. The metal silicide structure is disposed on the stack structure. The metal silicide structure includes a first metal element, a second metal element, and a silicon element. The first metal element is different from the second metal element, and concentrations of the first metal element and the second metal element gradually decrease along a direction from a top surface of the metal silicide structure to the substrate.
Abstract:
A method of fabricating a semiconductor device is provided. A substrate is provided. Thereafter, a dielectric layer is formed on the substrate, wherein the dielectric layer includes a first portion adjacent to the substrate and a second portion adjacent to the first portion. Afterwards, the dielectric layer is treated with nitrogen trifluoride (NF3) to remove the second portion of the dielectric layer and therefore expose the first portion of the dielectric layer. A semiconductor device is also provided.
Abstract:
Provided is a word line structure including a substrate, a stack structure, and a metal silicide structure. The stack structure is disposed on the substrate. The metal silicide structure is disposed on the stack structure. The metal silicide structure includes a first metal element, a second metal element, and a silicon element. The first metal element is different from the second metal element, and concentrations of the first metal element and the second metal element gradually decrease along a direction from a top surface of the metal silicide structure to the substrate.
Abstract:
An integrated circuit includes a stack in a stack region and a region outside the stack region. A buttress structure disposed outside the stack includes a fence-shaped, electrically passive element configured to oppose expansion of materials outside the stack region in a direction toward the stack region.
Abstract:
A method of forming a conductive plug is disclosed. A material layer having at least one opening is provided on a substrate. A first conductive layer is deposited in the opening, wherein the first conductive layer does not completely fill up the opening. A second conductive layer is deposited on the first conductive layer. A surface treatment is performed after the step of depositing the first conductive layer and before the step of depositing the second conductive layer, so that the first deposition rate of the second conductive layer at the lower portion of the opening is greater the second deposition rate of the second conductive layer at the upper portion of the opening. A void-free conductive plug can be easily formed with the method of the invention.
Abstract:
A method of forming a conductive plug is disclosed. A material layer having at least one opening is provided on a substrate. A first conductive layer is deposited in the opening, wherein the first conductive layer does not completely fill up the opening. A second conductive layer is deposited on the first conductive layer. A surface treatment is performed after the step of depositing the first conductive layer and before the step of depositing the second conductive layer, so that the first deposition rate of the second conductive layer at the lower portion of the opening is greater the second deposition rate of the second conductive layer at the upper portion of the opening. A void-free conductive plug can be easily formed with the method of the invention.