Abstract:
Described are structures and techniques for providing high-efficiency. high-power-density piezoelectric resonators (PRs) for use in power converters. In some embodiments. a power converter can include a PR for energy transfer. where the PR substantially satisfies geometry conditions disclosed herein for achieving high-efficiency and high-power-density. The geometry conditions can be defined in terms of the converter's specified (e.g., rated) voltage and power level.
Abstract:
Briefly, in accordance with one or more embodiments, a headphone device, comprises at least one ear muff comprising a structure to hold the at least one ear muff against an ear of a user, and at least one driver disposed in the at least one ear muff. An earbud comprises an earbud housing having a protrusion to fit into an external acoustic meatus or ear canal of a user, and a driver disposed in the earbud housing. The driver comprises an electrostatic acoustic transducer comprising a substrate comprising a first material to function as a first electrode, a dielectric layer coupled with the first material, wherein the dielectric layer has one or more cavities formed therein, and a membrane coupled with the dielectric layer to cover the one or more cavities and to function as a second electrode.
Abstract:
A method includes encapsulating structures disposed on or over a surface of a substrate in an encapsulant. The method also includes separating the encapsulant from the substrate. An apparatus includes a composite film having structures embedded in an encapsulant. The composite film has a surface with a surface roughness of less than one nm. An apparatus includes an encapsulant film having a surface with indentations formed therein. The surface has a surface roughness apart from the indentations of less than one nm.
Abstract:
Briefly, in accordance with one or more embodiments, a headphone device, comprises at least one ear muff comprising a structure to hold the at least one ear muff against an ear of a user, and at least one driver disposed in the at least one ear muff An earbud comprises an earbud housing having a protrusion to fit into an external acoustic meatus or ear canal of a user, and a driver disposed in the earbud housing. The driver comprises an electrostatic acoustic transducer comprising a substrate comprising a first material to function as a first electrode, a dielectric layer coupled with the first material, wherein the dielectric layer has one or more cavities formed therein, and a membrane coupled with the dielectric layer to cover the one or more cavities and to function as a second electrode.
Abstract:
Electromechanical devices described herein may employ tunneling phenomena to function as low-voltage switches. Opposing electrodes may be separated by an elastically deformable layer which, in some cases, may be made up of a non-electrically conductive material. In some embodiments, the elastically deformable layer is substantially free of electrically conductive material. When a sufficient actuation voltage and/or force is applied, the electrodes are brought toward one another and, accordingly, the elastically deformable layer is compressed. Though, the elastically deformable layer prevents the electrodes from making direct contact with one another. Rather, when the electrodes are close enough to one another, a tunneling current arises therebetween. The elastically deformable layer may exhibit spring-like behavior such that, upon release of the actuation voltage and/or force, the separation distance between electrodes is restored. Thus, the electromechanical device may be actuated between open and closed switch positions.
Abstract:
According to one aspect of the present disclosure, an electrical-to-electrical power converter includes an energy storage component including a transducer material and a second material for mechanical energy storage, the second material attached to the transducer material. In some embodiments, the transducer material and the second material are both configured to store mechanical energy.
Abstract:
According to one aspect of the disclosure, a converter having a first port and a second port, the converter comprises: a piezoelectric transformer (PT) having a first port and a second port; one or more first switches configured to operate in accordance with a first switching sub-sequence to transfer energy from the first port of the converter to the first port of the PT, the first switching sub-sequence having at least six (6) stages; and one or more second switches configured to operate in accordance with a second switching sub-sequence to transfer energy from the second port of the PT to the second port of the converter.
Abstract:
A piezoelectric sensor and amplifier for use with an auditory aid device are disclosed. The piezoelectric sensor includes a top sensor and a bottom sensor disposed on opposite surfaces of a flex printed circuit board. The top and bottom sensors are made of a piezoelectric material, such as PVDF. Further, the piezoelectric sensor is adapted to be implanted into a subject's ear, where the piezoelectric sensor is cantilevered with the free, or distal end, touching the umbo. The proximal end is held in place by a support that is affixed to the ear. Additionally, the piezoelectric sensor is shaped so that the width of the distal end is less than the width at the proximal end. Further, the piezoelectric sensor generates differential signals, which are then amplified using a differential amplifier circuit.
Abstract:
A system for providing electromagnetic imaging through magnetoquasistatic sensing contains an electromagnetic sensor for imaging a sample. The electromagnetic sensor contains drive/sense electronics and a pixelated sensor array having an array of inductive loops that source magnetic fields that interact with the sample, wherein the inductive loops are individually drivable by the drive/sense electronics in a coordinated manner to establish a desired temporal and spatial pattern in which electrical properties of the inductive loops are used to generate an image. Other components of the system include a precision motion controller, sensor head and associated electronics, and a computer for performing data acquisition and signal inversion.
Abstract:
A system for providing electromagnetic imaging through magnetoquasistatic sensing contains an electromagnetic sensor for imaging a sample. The electromagnetic sensor contains drive/sense electronics and a pixelated sensor array having an array of inductive loops that source magnetic fields that interact with the sample, wherein the inductive loops are individually drivable by the drive/sense electronics in a coordinated manner to establish a desired temporal and spatial pattern in which electrical properties of the inductive loops are used to generate an image. Other components of the system include a precision motion controller, sensor head and associated electronics, and a computer for performing data acquisition and signal inversion.