Abstract:
The invention provides a system improving signal handling, e.g., transmission and/or processing. In an embodiment, the system may include a filter circuit, a magnitude bit truncation circuit and a utility circuit. The filter circuit may be coupled to a target signal which contains one or more desired signals at one or more interested bands, for attenuating each said interested band to form a filtered signal. The magnitude bit truncation circuit may be coupled to the filter circuit, for truncating one or more bits of each sample of the filtered signal to form a truncated signal. The utility circuit may be coupled to the magnitude bit truncation circuit, for handling the truncated signal to implement handling of the target signal, so as to reduce resource requirement and enhance error tolerance comparing with directly handling the target signal.
Abstract:
A PLL includes a phase frequency detector (PFD), a charge pump, a capacitor coupled to the charge pump, an analog-to-digital convertor (ADC), a noise canceller, an accumulator, a loop filter, an oscillator, a digital block and a frequency divider. The PFD detects a phase difference between a reference signal and a divided signal. The charge pump generates a charge pump signal in response to the phase difference. The ADC converts the charge pump signal to a first digital signal, and quantizes it to a second digital signal. The noise canceller forms a shaped noise signal according to the first and second digital signals, and eliminates the shaped noise signal at the output of the noise canceller to generate a noise cancelled signal. The accumulator accumulates the noise cancelled signal. The loop filter filters the accumulated signal. The oscillator provides an output oscillating signal in response to the filtered signal.
Abstract:
A dynamic feed-forward OPAMP-based circuit is provided. A first amplifying stage amplifies a pair of input differential signals to provide a pair of intermediate differential signals. A second amplifying stage amplifies the pair of intermediate differential signals to provide a pair of output differential signals. A first capacitor is coupled to a non-inverting input terminal of the first amplifying stage. A second capacitor is coupled to an inverting input terminal of the first amplifying stage. A feed-forward transconductance stage is coupled between the first and second capacitors and the second amplifying stage. The first and second capacitors and the feed-forward stage form a high-frequency path with a first gain curve, and the first amplifying stage and the second amplifying stage form a high-gain path with a second gain curve. The operational amplifier provides an open-loop gain according to the first and second gain curves.
Abstract:
An analog-to-digital converting device includes: an integrator arranged to generate an integrating signal according to an analog input signal and a first analog feedback signal; a low-pass filter arranged to generate a first filtered signal according to the integrating signal; an analog-to-digital converter arranged to generate a digital output signal according to the first filtered signal; and a first digital-to-analog converter arranged to generate the first analog feedback signal according to the digital output signal.
Abstract:
The invention provides a system improving signal handling, e.g., transmission and/or processing. In an embodiment, the system may include a filter circuit, a magnitude bit truncation circuit and a utility circuit. The filter circuit may be coupled to a target signal which contains one or more desired signals at one or more interested bands, for attenuating each said interested band to form a filtered signal. The magnitude bit truncation circuit may be coupled to the filter circuit, for truncating one or more bits of each sample of the filtered signal to form a truncated signal. The utility circuit may be coupled to the magnitude bit truncation circuit, for handling the truncated signal to implement handling of the target signal, so as to reduce resource requirement and enhance error tolerance comparing with directly handling the target signal.
Abstract:
A low-dropout regulator (LDO) capable of providing high power-supply rejection ratio (PSRR) and good reverse isolation. The LDO may include a core circuitry and a reverse isolation circuitry. The core circuitry may include a PSRR circuitry coupled to an output node and configured to provide high PSRR at the output node. The reverse isolation circuitry may be configured to provide good reverse isolation at the output node by, for example, providing current in response to ripples at the output node. The reverse isolation circuitry may be configured with bandwidth higher than that of the core circuitry such that it can provide fast transient response. The reverse isolation circuitry may be configurable and/or reconfigurable for a desirable reverse isolation performance. The reverse isolation circuitry may be configurable and/or reconfigurable to trade off between power consumed by the reverse isolation circuitry and a leakage current flowing through the core circuitry.
Abstract:
An exemplary quantizer includes a multi-bit analog-to-digital converter (ADC) and a first digital-to-analog converter (DAC) feedback circuit. The multi-bit ADC has an internal DAC associated with comparison of each sampled analog input of the multi-bit ADC. The multi-bit ADC converts a currently-sampled analog input into a first digital output. A first noise-shaped truncation output is derived from the first digital output. The first DAC feedback circuit transfers a first truncation residue associated with the first noise-shaped truncation output to the internal DAC. The transferred first truncation residue is reflected in comparison of a later-sampled analog input of the multi-bit ADC via the internal DAC.
Abstract:
A resonating device includes: an amplifying circuit having a first input terminal, and an output terminal for outputting an output signal; a first feedback circuit coupled between the first input terminal and the output terminal of the amplifying circuit; a second feedback circuit, coupled between the first input terminal and the output terminal of the amplifying circuit; and a gain adjusting circuit, having an input terminal for receiving an input signal, and a first output terminal coupled to the first input terminal of the amplifying circuit; wherein a first equivalent impedance on a first intermediate terminal in the first feedback circuit substantially equals a second equivalent impedance on a second intermediate terminal in the second feedback circuit, and the gain adjusting circuit is arranged to tune a transfer function from the input signal to the output signal.
Abstract:
An analog-to-digital converting device includes: an integrator arranged to generate an integrating signal according to an analog input signal and a first analog feedback signal; a low-pass filter arranged to generate a first filtered signal according to the integrating signal; an analog-to-digital converter arranged to generate a digital output signal according to the first filtered signal; and a first digital-to-analog converter arranged to generate the first analog feedback signal according to the digital output signal.
Abstract:
A current controlling device includes: a first resistive circuit arranged to selectively conduct a first current to a first output terminal from a first input terminal; and a second resistive circuit arranged to selectively conduct a second current to a second output terminal from the first input terminal; wherein when the first resistive circuit conducts the first current to the first output terminal and when the second resistive circuit does not conduct the second current to the second output terminal, the first input terminal has a first input impedance; when the first resistive circuit does not conduct the first current to the first output terminal and when the second resistive circuit conducts the second current to the second output terminal, the first input terminal has a second input impedance substantially equal to the first input impedance.