Abstract:
An embodiment of the invention provides a method for configuring a transmitter (Tx) bandwidth (BW) and a receiver (Rx) BW of a communication apparatus, including: transmitting a first capability of a Tx and a second capability of an Rx to a network device; receiving at least one configuration associated to the first capability and the second capability from the network device; and configuring the Tx BW and the Rx BW according to the at least one configuration; wherein the Tx BW is in a Tx channel BW (CBW), and the Rx BW is in an Rx CBW.
Abstract:
Aspects of the disclosure provide a control apparatus that includes transceiver circuitry and processing circuitry. The transceiver circuitry is configured to transmit/receive signals from a plurality of terminal devices using a shared channel. The processing circuitry is configured to determine distances to the plurality of terminal devices, allocate resource elements in the shared channel according to the distances, and communicate, via the transceiver circuitry, with the plurality of terminal devices according to the allocation of the resource elements in the shared channel.
Abstract:
A transmitter system includes a digital phase rotator, a phase rotation controller, and a digital radio-frequency (RF) transmitter. The digital phase rotator receives a first constellation data, and applies a digital phase rotation to the received first constellation data to generate a second constellation data. The phase rotation controller configures the digital phase rotation. The digital RF transmitter receives a digital input data derived from the second constellation data, and converts the digital input data into an analog RF output.
Abstract:
A wireless communication device includes a first wireless communication system and a second wireless communication system. Regarding the first wireless communication system, an up-conversion circuit up-converts a first transmit (TX) signal in a baseband to generate a second TX signal with a first carrier frequency, and a front-end circuit transmits the second TX signal to another wireless communication device. Regarding the second wireless communication system, a first down-conversion circuit down-converts a first receive (RX) signal with a second carrier frequency to generate a second RX signal with a third carrier frequency, and a second down-conversion circuit down-converts the second RX signal with the third carrier frequency to generate a third RX signal in the baseband. The third carrier frequency is different from all fundamental frequencies included in a band combination that is employed at the first wireless communication system and is supported by another wireless communication device.
Abstract:
Aspects of the disclosure provide a control apparatus that includes transceiver circuitry and processing circuitry. The transceiver circuitry is configured to transmit/receive signals from a plurality of terminal devices using a shared channel. The processing circuitry is configured to determine distances to the plurality of terminal devices, allocate resource elements in the shared channel according to the distances, and communicate, via the transceiver circuitry, with the plurality of terminal devices according to the allocation of the resource elements in the shared channel.
Abstract:
A reconfigurable circuit block includes a rate-conversion circuit, a processing circuit, a first asynchronous interface circuit, and a second asynchronous interface circuit. The rate-conversion circuit converts a first input signal into a first output signal. The processing circuit processes a second input signal to generate a second output signal. The first asynchronous interface circuit outputs a third output signal asynchronous with the first output signal. The second asynchronous interface circuit outputs a fourth output signal asynchronous with the second output signal. The controllable interconnection circuit transmits the third output signal to the processing circuit to serve as the second input signal when controlled to have a first interconnection configuration, and transmits the fourth output signal to the rate-conversion circuit to serve as the first input signal when controlled to have a second interconnection configuration.
Abstract:
A transmitter system includes a digital phase rotator, a phase rotation controller, and a digital radio-frequency (RF) transmitter. The digital phase rotator receives a first constellation data, and applies a digital phase rotation to the received first constellation data to generate a second constellation data. The phase rotation controller configures the digital phase rotation. The digital RF transmitter receives a digital input data derived from the second constellation data, and converts the digital input data into an analog RF output.
Abstract:
A reconfigurable circuit block includes a rate-conversion circuit, a processing circuit, a first asynchronous interface circuit, and a second asynchronous interface circuit. The rate-conversion circuit converts a first input signal into a first output signal. The processing circuit processes a second input signal to generate a second output signal. The first asynchronous interface circuit outputs a third output signal asynchronous with the first output signal. The second asynchronous interface circuit outputs a fourth output signal asynchronous with the second output signal. The controllable interconnection circuit transmits the third output signal to the processing circuit to serve as the second input signal when controlled to have a first interconnection configuration, and transmits the fourth output signal to the rate-conversion circuit to serve as the first input signal when controlled to have a second interconnection configuration.