Abstract:
A resonant wireless power (RWP) system is provided that includes a signal generator that provides an input signal waveform. An amplifier structure amplifies signals for transmissions to a receiver that is powered from a fixed DC voltage supply. The amplifier structure is operated either using differential or single-ended amplifiers to provide two different output power levels, in burst mode to provide a range of output power levels, or using a capacitor in a matching network that is adjusted to provide a range of output power levels.
Abstract:
A transmitter module is used in a wireless charging system, and is used for performing in-band communication with a receiver module in the wireless charging system to provide a message to the receiver module. The transmitter module has a matching network, a rectifier and an impedance component. The matching network has at least one input terminal coupled to a coil of the transmitter module and at least one output terminal. The rectifier is coupled to the output terminal of the matching network. The impedance component is selectively coupled to the output terminal of the matching network to vary a reflected impedance of the transmitter module seen by the receiver module. By varying the reflected impedance of the transmitter module seen by the receiver module, the transmitter module communicates with the receiver module to provide power control commands, status and/or foreign object detection information.
Abstract:
A resonant wireless power system includes a source circuit having a source coil, an ac driver with a first resistance, representing the equivalent output impedance of the ac driver, and a matching network. A current probe measures the magnitude signal of the instantaneous source coil current. A voltage probe measures the instantaneous ac driver voltage. A phase detector compares the phase of the instantaneous source coil current and the instantaneous ac driver voltage, and produces a first output signal proportional to the phase difference. A first amplifier compares the magnitude signal and a target signal, and produces an error signal proportional to the difference. A first compensation filter produces the control voltage that determines the ac driver supply voltage. A second amplifier amplifies the first output signal. A second compensation filter produces the control voltage that determines the impedance of a variable element in the source circuit.
Abstract:
A resonant wireless power receiver that includes an electromagnetic resonator having one or more inductive elements that are arranged to form a receiver coil and a network of passive components arranged to form a matching network. A rectifier circuit converts ac power from the electromagnetic resonator to dc power. An available-power indicator measures the rectified power to assess the instantaneous power available to the receiver.
Abstract:
A variable gain circuit used in an in-band communication system is provided that includes a current sense pickup that is coupled to the output of a DC power source that senses current from the DC power source and provides a first output signal. A variable controlled amplifier structure, that is coupled to the DC power source, receives the first output signal and provides a specified amount of gain to the first output signal so as to produce a second output signal. A digital signal is produced using the second output having a selected frequency bandwidth.
Abstract:
A wireless charging in-band communication system includes a transmitter module that formats a message using CRC calculation and attaches the results of the CRC calculation to the message for message error detection. The transmitter includes channel encoding for message error correction. A modulation module performs biphase modulation for DC balanced signals and impedance switching to change reflected impedance seen by the source. A synchronization module prepending the message with a synchronization sequence having Golay complementary codes. Moreover, the in-band communication includes a receiver module that receives the message from the transmitter module. The receiver module includes an impedance sensing circuit to detect changes in the reflected impedance of the transmitter module. The receiver module includes a front end filter used for pulse shaping and noise rejection. A preamble detection block includes a Golay complementary code correlator used for message detection, synchronization, and equalization coefficient estimation and selection. A decoding module performs biphase demodulation with error correction with a DC offset being estimated as the average value of the signal over the length of the message before channel decoding Also, the decoding module performs equalization, error correction channel decoding,and error detection (CRC).
Abstract:
A wireless power receiver IC in which the power path can be reconfigured as either a low-dropout regulator (LDO), a switched-mode power supply (SMPS) or a power switch (PSW) is provided. All three modes share the same pass device to reduce die area and share the same output terminal to reduce pin. In an inductive wireless receiver, the power path can be reprogrammed on the fly to LDO or PSW mode or can be reprogrammed on the fly to SMPS or PSW mode. In a resonant or multi-mode wireless receiver, the power path can be reprogrammed on the fly to SMPS or PSW mode. Furthermore, to achieve high power transfer efficiency performance, using N-channel MOSFET as its pass device has better efficiency and smaller die area than P-channel MOSFET pass device.
Abstract:
A wireless charging in-band communication system includes a channel encoding for message error correction and detection. A modulation module performs biphase modulation for DC balanced signals and impedance switching to change reflected impedance seen by the source. A synchronization module prepends the message with a synchronization sequence having Golay complementary codes. A receiver module receives the message from the transmitter module. A preamble detection block has a Golay complementary code correlator used for message detection, synchronization, and equalization coefficient estimation and selection. A decoding module that performs biphase demodulation with error correction with a DC offset being estimated as the average value of the signal over the length of the message before channel decoding. The decoding module performs equalization, error correction and detection channel decoding.
Abstract:
A wireless charging in-band communication system includes a channel encoding for message error correction and detection. A modulation module performs biphase modulation for DC balanced signals and impedance switching to change reflected impedance seen by the source. A synchronization module prepends the message with a synchronization sequence having Golay complementary codes. A receiver module receives the message from the transmitter module. A preamble detection block has a Golay complementary code correlator used for message detection, synchronization, and equalization coefficient estimation and selection. A decoding module that performs biphase demodulation with error correction with a DC offset being estimated as the average value of the signal over the length of the message before channel decoding. The decoding module performs equalization, error correction and detection channel decoding.
Abstract:
A synchronous rectifier using only n-channel devices in which the low-side switches are effectively cross-coupled using low-side comparators and the high-side switches perform an accurate zero-voltage-switching (ZVS) comparison. The charging path of each bootstrap domain is completed through the low-side switches, which are each always on for every half-cycle independent of loading. This scheme gives rectifier efficiency gain because a) each bootstrap domain receives maximum charging time, and b) the charging occurs through a switch rather than a diode. Both these factors ensure the bootstrap domain is fully charged, thereby reducing conduction losses through the rectifier switches. Furthermore, settings may be adjusted by software to optimize the resistive and capacitive losses of the rectifier. Using data for die temperature and operating frequency, software can create a feedback loop, dynamically adjusting rectifier settings in order to achieve the best possible efficiency.