Abstract:
An apparatus includes one or more optoelectronic transducers, driving circuitry, one or more cooling elements, and a light coupling module. The optoelectronic transducers are configured to convert between optical signals conveyed over optical fibers and respective electrical signals. The driving circuitry is configured to process the electrical signals. The cooling elements are configured to remove heat that is produced at least by the driving circuitry. The light coupling module is configured to couple the optical signals between the optical fibers and the optoelectronic transducers, and additionally serves as a baseplate for the cooling elements.
Abstract:
Apparatuses and associated methods of manufacturing are described that provide a cage receptacle assembly configured to receive a cable connector. The cage receptacle assembly includes a cage body defining a first end and a second end. The cage body includes a top cage member attached to a bottom cage member via two side portions of the top cage member, and the bottom cage member defines an opening. The cage receptacle assembly defines a heat dissipation unit disposed within the opening of the bottom cage member, and the heat dissipation unit includes one or more heat dissipation elements allowing heat to be transferred from the cable connector to an external environment of the cage receptacle assembly.
Abstract:
An apparatus includes one or more optoelectronic transducers, driving circuitry, one or more cooling elements, and a light coupling module. The optoelectronic transducers are configured to convert between optical signals conveyed over optical fibers and respective electrical signals. The driving circuitry is configured to process the electrical signals. The cooling elements are configured to remove heat that is produced at least by the driving circuitry. The light coupling module is configured to couple the optical signals between the optical fibers and the optoelectronic transducers, and additionally serves as a baseplate for the cooling elements.
Abstract:
A device may include: a frame having an interior; an electronic component; a heat conducting body in thermal contact with the electronic component; a conduit containing a liquid coolant, the conduit being coupled to the heat conducting body to deliver the liquid coolant to and from the heat conducting body; and a pump positioned within the interior of the frame, the pump being removably insertable into the interior of the frame and being removably couplable to the conduit to circulate the liquid coolant through the conduit.
Abstract:
An electronic device may include a receptacle cage comprising a longitudinal aperture extending along a portion of a top surface of the receptacle cage, a cooling body disposed directly on the top surface of the receptacle cage, wherein a longitudinal portion of a bottom surface of the cooling body is disposed within the longitudinal aperture on the top surface of the receptacle cage, a first conduit to deliver a liquid coolant into an interior of the cooling body, and a second conduit to deliver the liquid coolant from the interior of the cooling body.
Abstract:
An apparatus includes one or more optoelectronic transducers, driving circuitry, one or more cooling elements, and a light coupling module. The optoelectronic transducers are configured to convert between optical signals conveyed over optical fibers and respective electrical signals. The driving circuitry is configured to process the electrical signals. The cooling elements are configured to remove heat that is produced at least by the driving circuitry. The light coupling module is configured to couple the optical signals between the optical fibers and the optoelectronic transducers, and additionally serves as a baseplate for the cooling elements.
Abstract:
A device may include: a frame having an interior; an electronic component; a heat conducting body in thermal contact with the electronic component; a conduit containing a liquid coolant, the conduit being coupled to the heat conducting body to deliver the liquid coolant to and from the heat conducting body; and a pump positioned within the interior of the frame, the pump being removably insertable into the interior of the frame and being removably couplable to the conduit to circulate the liquid coolant through the conduit.
Abstract:
Apparatuses, systems, and associated methods of manufacturing are described that provide a cooling system for network connections. An example system includes a networking cage assembly that receives a networking cable and a water block that circulates water. The system includes a thermal unit that includes a thermal medium. The thermal medium defines a static end that thermally engages the water block and a dynamic end opposite the static end that is disposed within the networking cage assembly. In an operational configuration in which the networking cable is received by the networking cage assembly, a portion of the dynamic end thermally engages the networking cable so as to dissipate heat from the networking cable to the thermal medium, the thermal medium conducts the heat from the dynamic end to the static end, and the static end dissipates heat from the thermal medium via thermal engagement with the water block.
Abstract:
An apparatus includes one or more optoelectronic transducers, driving circuitry, one or more cooling elements, and a light coupling module. The optoelectronic transducers are configured to convert between optical signals conveyed over optical fibers and respective electrical signals. The driving circuitry is configured to process the electrical signals. The cooling elements are configured to remove heat that is produced at least by the driving circuitry. The light coupling module is configured to couple the optical signals between the optical fibers and the optoelectronic transducers, and additionally serves as a baseplate for the cooling elements.