Abstract:
Embodiments of a data capture system and method may be used in a variety of devices, such as in memory controllers and memory devices. The data capture system and method may generate a first set of periodic signals and a second set of periodic signals that differs from the first set. Either the first set of periodic signals or the second set of periodic signals may be selected and used to generate a set of data capture signals. The selection of either the first set or the second set may be made on the basis of the number of serial data digits in a previously captured burst of data. The data capture signals may then be used to capture a burst of serial data digits.
Abstract:
Memories containing command decoder, chip enable, and signal truncation circuits are disclosed. One such command decoder circuit may include command decoder logic configured to receive command signals and output a decoded command to an interconnect bus responsive to a chip select signal having an active state. Decoder circuits may also prevent coupling commands to the interconnect bus based on the receipt of chip select signals having inactive states. Chip enable circuits having control logic are configured to receive chip select signals and provide the chip select signals to an interconnect bus responsive to receiving a valid command. Chip enable circuits may also prevent coupling chip select signals to the interconnect bus from chip enable signals based on the receipt of invalid command signals. Signal truncation circuits may be used to shorten and/or shift chip select signals to increase timing margins and improve the reliability of command execution by memories.
Abstract:
Apparatuses, master-slave detect circuits, memories, and methods are disclosed. One such method includes performing a master detect phase during which a memory unit in a memory group is determined to be a master memory unit, determining at each memory unit its location relative to other memory units, and determining at each memory unit its location in the memory group based on a total number of slave memory units and its location relative to other memory units.
Abstract:
Apparatuses, master-slave detect circuits, memories, and methods are disclosed. One such method includes performing a master detect phase during which a memory unit in a memory group is determined to be a master memory unit, determining at each memory unit its location relative to other memory units, and determining at each memory unit its location in the memory group based on a total number of slave memory units and its location relative to other memory units.
Abstract:
Apparatuses, master-slave detect circuits, memories, and methods are disclosed. One such method includes performing a master detect phase during which a memory unit in a memory group is determined to be a master memory unit, determining at each memory unit its location relative to other memory units, and determining at each memory unit its location in the memory group based on a total number of slave memory units and its location relative to other memory units.
Abstract:
Apparatuses, master-slave detect circuits, memories, and methods are disclosed. One such method includes performing a master detect phase during which a memory unit in a memory group is determined to be a master memory unit, determining at each memory unit its location relative to other memory units, and determining at each memory unit its location in the memory group based on a total number of slave memory units and its location relative to other memory units.