Abstract:
A system for controlling RF power supplies applying power to a load, such as a plasma chamber, includes a master power supply and a slave power supply. The master power supply provides a control signal, such as a frequency and phase signal, to the slave power supply. The slave power supply receives the frequency and phase signal and also receives signals characteristic of the spectral emissions detected from the load. The slave RF power supply varies the phase and power of its RF output signal applied to the load. Varying the power controls the width of an ion distribution function, and varying the phase controls a peak of the ion distribution. Depending upon the coupling between the RF generators and the load, different spectral emissions are detected, including first harmonics, second harmonics, and, in the case of a dual frequency drive system, intermodulation distortion.
Abstract:
A system includes a control module, a detection module, and a reaction module. The control module is configured to receive a sensor signal indicating a power characteristic of an output power provided from a power generator to a load. The load is separate from the control module and the power generator. The detection module is configured to (i) detect a shift parameter of the power characteristic based on the sensor signal, (ii) compare the shift parameter to a first threshold, and (iii) indicate whether the shift parameter has exceeded the first threshold and not a second threshold. The reaction module is configured to indicate that a low-level abnormality exists in the load in response to the shift parameter exceeding the first threshold and not the second threshold.
Abstract:
A system for controlling RF power supplies applying power to a load, such as a plasma chamber, includes a master power supply and a slave power supply. The master power supply provides a control signal, such as a frequency and phase signal, to the slave power supply. The slave power supply receives the frequency and phase signal and also receives signals characteristic of the spectral emissions detected from the load. The slave RF power supply varies the phase and power of its RF output signal applied to the load. Varying the power controls the width of an ion distribution function, and varying the phase controls a peak of the ion distribution. Depending upon the coupling between the RF generators and the load, different spectral emissions are detected, including first harmonics, second harmonics, and, in the case of a dual frequency drive system, intermodulation distortion.
Abstract:
A RF power supply system for delivering periodic RF power to a load. A power amplifier outputs a RF signal to the load. A sensor measures the RF signal provided to the load and outputs signals that vary in accordance with the RF signal. A first feedback loop enables control the RF signal based upon power determined in accordance with output from the sensor. A second feedback loop enables control the RF signal based upon energy measured in accordance with signals output from the sensor. Energy amplitude and duration provide control values for varying the RF signal. The control system and techniques are applicable to both pulsed RF power supplies and in various instances to continuous wave power supplies.