Abstract:
A method of synthesizing and controlling the internal diameters, conical angles, and morphology of tubular carbon nano/micro structures. Different morphologies can be synthesized included but not limited to cones, straight tubes, nozzles, cone-on-tube (funnels), tube-on-cone, cone-tube-cone, n-staged structures, multijunctioned tubes, Y-junctions, dumbbell (pinched morphology) and capsules. The process is based on changing the wetting behavior of a low melting metals such as gallium, indium, and aluminum with carbon using a growth environment of different gas phase chemistries. The described carbon tubular morphologies can be synthesized using any kind of gas phase excitation such as, but not limited to, microwave excitation, hot filament excitation, thermal excitation and Radio Frequency (RF) excitations. The depositions area is only limited by the substrate area in the equipment used and not limited by the process. The internal diameters of the carbon tubular structures can be varied from a few nm to as high as about 20 microns. The wall thickness is about 10-20 nm. The carbon tubular structures can be formed open on both ends are directly applicable to micro-fluidics. Gallium required for the growth of the carbon tubes can be supplied either as a thin film on the substrate or could be supplied through the gas phase with different precursors such as Tri-methyl gallium. Seamless Y-junctions with no internal obstructions can be synthesized without the need of templates. Multi-channeled junctions can also be synthesized without any internal obstructions. Gallium that partially fills the carbon structures can be removed from the tubes by simple heating in vacuum at temperature above 600°.
Abstract:
A dielectric constant of spacer material in a transistor is changed from a high-κ dielectric material to a low-κ dielectric material. The process uses oxidation treatments to enable the transformation of the high-κ dielectric material to a low-κ dielectric material.
Abstract:
High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric composed of a first dielectric layer disposed on the first fin active region, and a second, different, dielectric layer disposed on the first dielectric layer. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region. The second gate structure includes a second gate dielectric composed of the second dielectric layer disposed on the second fin active region.
Abstract:
A method of synthesizing and controlling the internal diameters, conical angles, and morphology of tubular carbon nano/micro structures. Different morphologies can be synthesized included but not limited to cones, straight tubes, nozzles, cone-on-tube (funnels), tube-on-cone, cone-tube-cone, n-staged structures, multijunctioned tubes, Y-junctions, dumbbell (pinched morphology) and capsules. The process is based on changing the wetting behavior of a low melting metals such as gallium, indium, and aluminum with carbon using a growth environment of different gas phase chemistries. The described carbon tubular morphologies can be synthesized using any kind of gas phase excitation such as, but not limited to, microwave excitation, hot filament excitation, thermal excitation and Radio Frequency (RF) excitations. The depositions area is only limited by the substrate area in the equipment used and not limited by the process. The internal diameters of the carbon tubular structures can be varied from a few nm to as high as about 20 microns. The wall thickness is about 10-20 nm. The carbon tubular structures can be formed open on both ends are directly applicable to micro-fluidics. Gallium required for the growth of the carbon tubes can be supplied either as a thin film on the substrate or could be supplied through the gas phase with different precursors such as Tri-methyl gallium. Seamless Y-junctions with no internal obstructions can be synthesized without the need of templates. Multi-channeled junctions can also be synthesized without any internal obstructions. Gallium that partially fills the carbon structures can be removed from the tubes by simple heating in vacuum at temperature above 600°.
Abstract:
Semiconductor devices having modulated nanowire counts and methods to form such devices are described. For example, a semiconductor structure includes a first semiconductor device having a plurality of nanowires disposed above a substrate and stacked in a first vertical plane with a first uppermost nanowire. A second semiconductor device has one or more nanowires disposed above the substrate and stacked in a second vertical plane with a second uppermost nanowire. The second semiconductor device includes one or more fewer nanowires than the first semiconductor device. The first and second uppermost nanowires are disposed in a same plane orthogonal to the first and second vertical planes.
Abstract:
High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region. The second gate structure includes a second gate dielectric, a second gate electrode, and second spacers. The second gate dielectric is composed of the second dielectric layer disposed on the second fin active region and along sidewalls of the second spacers.
Abstract:
Semiconductor devices having modulated nanowire counts and methods to form such devices are described. For example, a semiconductor structure includes a first semiconductor device having a plurality of nanowires disposed above a substrate and stacked in a first vertical plane with a first uppermost nanowire. A second semiconductor device has one or more nanowires disposed above the substrate and stacked in a second vertical plane with a second uppermost nanowire. The second semiconductor device includes one or more fewer nanowires than the first semiconductor device. The first and second uppermost nanowires are disposed in a same plane orthogonal to the first and second vertical planes.
Abstract:
High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region. The second gate structure includes a second gate dielectric, a second gate electrode, and second spacers. The second gate dielectric is composed of the second dielectric layer disposed on the second fin active region and along sidewalls of the second spacers.
Abstract:
High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region. The second gate structure includes a second gate dielectric, a second gate electrode, and second spacers. The second gate dielectric is composed of the second dielectric layer disposed on the second fin active region and along sidewalls of the second spacers.
Abstract:
High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric composed of a first dielectric layer disposed on the first fin active region, and a second, different, dielectric layer disposed on the first dielectric layer. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region. The second gate structure includes a second gate dielectric composed of the second dielectric layer disposed on the second fin active region.