Abstract:
Methods and apparatus for radiation processing of semiconductor substrates using microwave or millimeter wave energy are provided. The microwave or millimeter wave energy may have a frequency between about 600 MHz and about 1 THz. Alternating current from a magnetron is coupled to a leaky microwave emitter that has an inner conductor and an outer conductor, the outer conductor having openings with a dimension smaller than a wavelength of the emitted radiation. The inner and outer conductors are separated by an insulating material. Interference patterns produced by the microwave emissions may be uniformized by phase modulating the power to the emitter and/or by frequency modulating the frequency of the power itself. Power from a single generator may be divided to two or more emitters by a power divider.
Abstract:
Methods for implanting ions into a substrate by a plasma immersion ion implanting process are provided. In one embodiment, the method for implanting ions into a substrate by a plasma immersion ion implantation process includes providing a substrate into a processing chamber, flowing a gas mixture including a hydride dopant gas and a fluorine-containing dopant gas into the processing chamber, wherein the hydride dopant gas comprises P-type hydride dopant gas, N-type hydride dopant gas, or a combination thereof, and the fluorine-containing dopant gas comprises a P-type or N-type dopant atom, generating a plasma from the gas mixture, and co-implanting ions from the gas mixture into a surface of the substrate.
Abstract:
In a plasma immersion ion implantation process, the thickness of a pre-implant chamber seasoning layer is increased (to permit implantation of a succession of wafers without replacing the seasoning layer) without loss of wafer clamping electrostatic force due to increased seasoning layer thickness. This is accomplished by first plasma-discharging residual electrostatic charge from the thick seasoning layer. The number of wafers which can be processed using the same seasoning layer is further increased by fractionally supplementing the seasoning layer after each wafer is processed, which may be followed by a brief plasma discharging of the supplemented seasoning before processing the next wafer.
Abstract:
Embodiments of the invention provide a novel apparatus and methods for forming a conformal doped layer on the surface of a substrate. A substrate is provided to a process chamber, and a layer of dopant source material is deposited by plasma deposition, atomic layer deposition, or plasma-assisted atomic layer deposition. The substrate is then subjected to thermal processing to activate and diffuse dopants into the substrate surface.
Abstract:
Methods for implanting ions into a substrate by a plasma immersion ion implanting process are provided. In one embodiment, a method for implanting ions into a substrate includes providing a substrate into a processing chamber, generating a plasma from a gas mixture including a reacting gas and a etching gas in the chamber, adjusting the ratio between the reacting gas and the etching gas in the supplied gas mixture and implanting ions from the plasma into the substrate. In another embodiment, the method includes providing a substrate into a processing chamber, supplying a gas mixture including reacting gas and a halogen containing reducing gas into the chamber, forming a plasma from the gas mixture, gradually increasing the ratio of the etching gas in the gas mixture, and implanting ions from the gas mixture into the substrate.
Abstract:
Methods of processing silicon substrates to form metal silicide layers thereover having more uniform thicknesses are provided herein. In some embodiments, a method of processing a substrate includes providing a substrate having a plurality of exposed regions comprising silicon, wherein at least two of the plurality of exposed regions have a different rate of formation of a metal silicide layer thereover; doping at least one of the exposed regions to control the rate of formation of a metal silicide layer thereover; and forming a metal silicide layer upon the exposed regions of the substrate, wherein the metal silicide layer has a reduced maximum thickness differential between the exposed regions.
Abstract:
A method of plasma immersion ion implantation of a workpiece having a photoresist mask on its top surface prevents photoresist failure from carbonization of the photoresist. The method includes performing successive ion implantation sub-steps, each of the ion implantation sub-steps having a time duration over which only a fractional top portion of the photoresist layer is damaged by ion implantation. After each one of the successive ion implantation sub-steps, the fractional top portion of the photoresist is removed while leaving the remaining portion of the photoresist layer in place by performing an ashing sub-step. The number of the successive ion implantation sub-steps is sufficient to reach a predetermined ion implantation dose in the workpiece.
Abstract:
Methods for implanting material into a substrate by a plasma immersion ion implanting process are provided. In one embodiment, a method for implanting material into a substrate includes providing a substrate into a processing chamber, the substrate comprising a substrate surface having a material layer formed thereon, generating a first plasma of a non-dopant processing gas, exposing the material layer to the plasma of the non-dopant processing gas, generating a second plasma of a dopant processing gas including a reacting gas adapted to produce dopant ions, and implanting dopant ions from the plasma into the material layer. The method may further include a cleaning or etch process.
Abstract:
Methods for implanting ions into a substrate by a plasma immersion ion implanting process are provided. In one embodiment, a method for implanting ions into a substrate includes providing a substrate into a processing chamber, the substrate comprising substrate surface having one or more features formed therein and each feature having one or more horizontal surfaces and one or more vertical surfaces, generating a plasma from a gas mixture including a reacting gas adapted to produce ions, depositing a material layer on the substrate surface and on at least one horizontal surface of the substrate feature, implanting ions from the plasma into the substrate by an isotropic process into at least one horizontal surface and into at least one vertical surface, and etching the material layer on the substrate surface and the at least one horizontal surface by an anisotropic process.
Abstract:
A method is provided for performing plasma immersion ion implantation with a highly uniform seasoning film on the interior of a reactor chamber having a ceiling and a cylindrical side wall and a wafer support pedestal facing the ceiling. The method includes providing a gas distribution ring with plural gas injection orifices on a periphery of a wafer support pedestal, the orifices facing radially outwardly from the wafer support pedestal. Silicon-containing gas is introduced through the gas distribution orifices of the ring to establish a radially outward flow pattern of the silicon-containing gas. The reactor includes pairs of conduit ports in the ceiling adjacent the side wall at opposing sides thereof and respective external conduits generally spanning the diameter of the chamber and coupled to respective pairs of the ports. The method further includes injecting oxygen gas through the conduit ports into the chamber to establish an axially downward flow pattern of oxygen gas in the chamber. RF power is coupled into the interior of each of the conduits to generate a toroidal plasma current of SixOy species passing through the chamber to deposit a seasoning layer of a SixOy material on surfaces within the chamber, while leaving the pedestal without a wafer so as to expose a wafer support surface of the pedestal.