Abstract:
Provided are methods and apparatus for functionalizing a substrate surface used as the channel in a gate stack. Silicon, germanium and silicon germanium substrates surfaces are functionalized with one or more of sulfur and selenium by plasma processing.
Abstract:
Embodiments of the present invention provide apparatus and method for improving gas distribution during thermal processing. One embodiment of the present invention provides an apparatus for processing a substrate comprising a chamber body defining a processing volume, a substrate support disposed in the processing volume, wherein the substrate support is configured to support and rotate the substrate, a gas inlet assembly coupled to an inlet of the chamber body and configured to provide a first gas flow to the processing volume, and an exhaust assembly coupled to an outlet of the chamber body, wherein the gas inlet assembly and the exhaust assembly are disposed on opposite sides of the chamber body, and the exhaust assembly defines an exhaust volume configured to extend the processing volume.
Abstract:
Embodiments of the present invention provide apparatus and method for improving gas distribution during thermal processing. One embodiment of the present invention provides an apparatus for processing a substrate comprising a chamber body defining a processing volume, a substrate support disposed in the processing volume, wherein the substrate support is configured to support and rotate the substrate, a gas inlet assembly coupled to an inlet of the chamber body and configured to provide a first gas flow to the processing volume, and an exhaust assembly coupled to an outlet of the chamber body, wherein the gas inlet assembly and the exhaust assembly are disposed on opposite sides of the chamber body, and the exhaust assembly defines an exhaust volume configured to extend the processing volume.
Abstract:
Embodiments of the present invention provide apparatus and method for improving gas distribution during thermal processing. One embodiment of the present invention provides an apparatus for processing a substrate comprising a chamber body defining a processing volume, a substrate support disposed in the processing volume, wherein the substrate support is configured to support and rotate the substrate, a gas inlet assembly coupled to an inlet of the chamber body and configured to provide a first gas flow to the processing volume, and an exhaust assembly coupled to an outlet of the chamber body, wherein the gas inlet assembly and the exhaust assembly are disposed on opposite sides of the chamber body, and the exhaust assembly defines an exhaust volume configured to extend the processing volume.
Abstract:
Methods, systems and computer program products are provided for social networking. In one method, a network builder receives a digital object from the user. The digital object contains information associated with the user. The network builder extracts the information associated with the user from the digital object. The network builder further access the strength of relationships between the user and a plurality of other users, each associated with one or more social networks. The relationships strength is extracted based at least in part on the extracted information. The network builder then adds the user to one or more social networks based on the information associated with the user and the strength of the relationships between the user and the plurality of other users.
Abstract:
A method and apparatus are provided for treating a substrate. The substrate is positioned on a support in a thermal treatment chamber. Electromagnetic radiation is directed toward the substrate to anneal a portion of the substrate. Other electromagnetic radiation is directed toward the substrate to preheat a portion of the substrate. The preheating reduces thermal stresses at the boundary between the preheat region and the anneal region. Any number of anneal and preheat regions are contemplated, with varying shapes and temperature profiles, as needed for specific embodiments. Any convenient source of electromagnetic radiation may be used, such as lasers, heat lamps, white light lamps, or flash lamps.
Abstract:
Methods and apparatus for processing semiconductor substrates are described. A processing chamber includes a substrate support with an in-situ plasma source, which may be an inductive, capacitive, microwave, or millimeter wave source, facing the substrate support and a radiant heat source, which may be a bank of thermal lamps, spaced apart from the substrate support. The support may be between the in-situ plasma source and the radiant heat source, and may rotate. A method or processing a substrate includes forming an oxide layer by exposing the substrate to a plasma generated in a process chamber, performing a plasma nitridation process on the substrate in the chamber, thermally treating the substrate using a radiant heat source disposed in the chamber while exposing the substrate to oxygen radicals formed outside the chamber, and forming an electrode by exposing the substrate to a plasma generated in the chamber.
Abstract:
A method and apparatus for oxidizing materials used in semiconductor integrated circuits, for example, for oxidizing silicon to form a dielectric gate. An ozonator is capable of producing a stream of least 70% ozone. The ozone passes into an RTP chamber through a water-cooled injector projecting into the chamber. Other gases such as hydrogen to increase oxidation rate, diluent gas such as nitrogen or O2, enter the chamber through another inlet. The chamber is maintained at a low pressure below 20 Torr and the substrate is advantageously maintained at a temperature less than 800° C. Alternatively, the oxidation may be performed in an LPCVD chamber including a pedestal heater and a showerhead gas injector in opposition to the pedestal.
Abstract:
A method of adjusting the heat transfer properties within a processing chamber is presented. Chamber properties may be determined and adjusted by adjusting the thermal mass of an edge ring disposed in the processing chamber.