摘要:
Systems and methods use extraction devices for extracting and monitoring biological fluids of patients. The systems and methods involve creating an opening in the biological tissue of the patient and placing a sampling aperture of the extraction device over the opening. The sampling aperture is defined in a contact surface of the extraction device that is placed into contact with the tissue of the patient. A pump of the extraction device such as a depressible bulb sealed to the body is charged to create a vacuum between the pump through a sampling channel to the sampling aperture, and the vacuum draws the biological fluid from the tissue opening into the sampling channel. An access point is exposed to the sampling channel, and the sample of fluid may be accessed from the access point. The access point may be an extraction opening covered by an access door, and the access door is opened to access the sample. Alternatively, the access point may be electrodes extending into the sampling channel where the electrodes are connectable to a fluid analyzer device.
摘要:
The systems and methods involve creating an opening in the biological tissue of the patient and placing a sampling aperture of the extraction device over the opening. The sampling aperture is defined in a contact surface of the extraction device that is placed into contact with the tissue of the patient. A pump of the extraction device such as a depressible bulb sealed to the body is charged to create a vacuum between the pump through a sampling channel to the sampling aperture, and the vacuum draws the biological fluid from the tissue opening into the sampling channel. An access point is exposed to the sampling channel, and the sample of fluid may be accessed from the access point. The access point may be an extraction opening covered by an access door, and the access door is opened to access the sample.
摘要:
The invention relates to methods and systems for creating and utilizing a modular multi-coverage insurance product. The modular multi-coverage insurance product includes a set of modular state-pre-approved insurance coverages corresponding to a plurality of insurable liabilities.
摘要:
An apparatus and method embodying the invention include utilizing a device with a limited number of interrogation devices to accomplish a large number of measurements on a target tissue (50). An instrument embodying the invention includes a plurality of detection devices (54) that are arranged in a predetermined pattern on a tissue contacting face of the instrument. The face of the instrument is located adjacent the target tissue (50), and a plurality of tissue characteristic measurement are simultaneously conducted. The detection devices (54) are moved to a new position, preferably without moving the tissue contacting face, and a second plurality of tissue characteristic measurements are simultaneously conducted. By conducting a series of measurements cycles in this manner, the ultimate resolution of the device is increased, while still obtaining a given resolution, which reduces potential cross-talk errors. Further, a plurality of tissue characteristics are simultaneously obtained from locations spaced across the target tissue (50) during each measurement cycle.
摘要:
A method and apparatus are provided that interrogate, receive, and analyze full emission spectra for at least one fluorescence excitation wavelength and for at least one reflectance measurement to determine tissue characteristics and correlate same to photographic images. Further, the system and method accomplish this measurement rapidly by increasing the light throughput by integrating optics into a hand held unit and avoiding the need for a coherent fiber optic bundle being used. The method includes illuminating a first portion of a target tissue with optical energy, forming a first image of the target tissue, illuminating a second portion of the target tissue with optical energy, performing spectroscopic measurements on optical energy reflected and/or emitted by the target tissue upon illumination of the second portion of the target tissue with optical energy, and determining tissue characteristics of the target tissue based on the results of the spectroscopic measurements.
摘要:
An apparatus and method according to the invention combine more than one optical modality (spectroscopic method), including but not limited to fluorescence, absorption, reflectance, polarization anisotropy, and phase modulation, to decouple morphological and biochemical changes associated with tissue changes due to disease, and thus to provide an accurate diagnosis of the tissue condition.
摘要:
A method and apparatus are provided that interrogate, receive, and analyze full emission spectra for at least one fluorescence excitation wavelength and for at least one reflectance measurement to determine tissue characteristics and correlate same to photographic images. Further, the system and method accomplish this measurement rapidly by increasing the light throughput by integrating optics into a hand held unit and avoiding the need for a coherent fiber optic bundle being used. The method includes illuminating a first portion of a target tissue with optical energy, forming a first image of the target tissue, illuminating a second portion of the target tissue with optical energy, performing spectroscopic measurements on optical energy reflected and/or emitted by the target tissue upon illumination of the second portion of the target tissue with optical energy, and determining tissue characteristics of the target tissue based on the results of the spectroscopic measurements.
摘要:
A method and apparatus are provided that interrogate, receive, and analyze full emission spectra for at least one fluorescence excitation wavelength and for at least one reflectance measurement to determine tissue characteristics and correlate same to photographic images. Further, the system and method accomplish this measurement rapidly by increasing the light throughput by integrating optics into a hand held unit and avoiding the need for a coherent fiber optic bundle being used. The method includes illuminating a first portion of a target tissue with optical energy, forming a first image of the target tissue, illuminating a second portion of the target tissue with optical energy, performing spectroscopic measurements on optical energy reflected and/or emitted by the target tissue upon illumination of the second portion of the target tissue with optical energy, and determining tissue characteristics of the target tissue based on the results of the spectroscopic measurements.
摘要:
A method and apparatus are provided that interrogate, receive, and analyze full emission spectra for at least one fluorescence excitation wavelength and for at least one reflectance measurement to determine tissue characteristics and correlate same to photographic images. Further, the system and method accomplish this measurement rapidly by increasing the light throughput by integrating optics into a hand held unit and avoiding the need for a coherent fiber optic bundle being used. The method includes illuminating a first portion of a target tissue with optical energy, forming a first image of the target tissue, illuminating a second portion of the target tissue with optical energy, performing spectroscopic measurements on optical energy reflected and/or emitted by the target tissue upon illumination of the second portion of the target tissue with optical energy, and determining tissue characteristics of the target tissue based on the results of the spectroscopic measurements.
摘要:
A system and method for extracting a biological fluid from an organism and continuously monitoring its characteristics. The system includes a tissue interface device suitable for positioning on or about the surface of the biological membrane of the organism and a monitor and control unit coupled to the tissue interface device. The tissue interface device includes a sensor positioned in a flow path of the fluid for continuously sensing a characteristic of the biological fluid as it flows out from the one or more artificial openings formed in the biological membrane. The sensor generates a sensor signal representative thereof. The monitor and control unit electrically or optically reads the sensor to obtain a measurement of a characteristic, such as concentration of a particular analyte, of the biological fluid on a continuous basis.