摘要:
Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
摘要:
Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
摘要:
Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
摘要:
Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
摘要:
Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
摘要:
A layered filter composite comprises a filter medium, and on the upstream surface thereof a homogeneous or graded layer of nonporous spherical glass microbeads as a filter aid. A method for filtering or prefiltering a liquid mixture is disclosed wherein a layer of glass microbeads is used as a filter or filter aid. The layered filter composite is useful in analytical applications as well as in large scale industrial and remedial (clean-up) applications.
摘要:
A separation-science disc dispenser (10) has a storage chamber (12) disposed normally to a base (20) that possesses a slot (24) into which a slidable member (26) resides. The storage chamber (12) contains disc units (14) that include a separation-science membrane (16) and a protective liner (18). Where the storage chamber (12) meets the base (20), there is an opening (30) in the storage chamber that allows disc units (14) to exit the storage chamber. The slidable member has a cavity (28) sized to receive a single disc unit (14) from the storage chamber (12) when the cavity (28) is in register with the opening (30). Drawing the slidable member (26) outward from slot (24) causes a single disc unit (14) to be discharged in a non-contaminated condition from the dispenser (10).
摘要:
A composite article having controlled void volume and mean pore size comprises:(a) polytetrafluoroethylene (PTFE) fibril matrix, and(b) insoluble, non-swellable sorptive particles enmeshed in said matrix, the ratio of non-swellable sorptive particles to PTFE is in the range of 40:1 to 1:4 by weight, the composite article having a porosity in the range of 30 to 80 percent void volume and a mean pore size in the range of 0.3 to 5 micrometers, preferably with at least 90 percent of pores having a size less than 3.6 micrometers.The article is prepared by incorporating lubricant in the precursor admixture in an amount sufficient to exceed the lubricant sorptive capacity of the particles by at least 3 weight percent and up to an amount at which the mass loses its integrity.
摘要:
A composite article comprising a fibrillated polytetrafluoroethylene (PTFE) matrix, electrically conductive particles, and energy expandable, electrically nonconductive hollow polymeric particles, which composite is conductive and allows for the flow of electricity and which, upon attaining a temperature which causes expansion of the expandable polymeric particles, becomes insulating and causes the flow of electricity to cease. The articles are thin and can be used as electrical circuit breaking elements.
摘要:
A composite article having controlled void volume and mean pore size comprises:(a) polytetrafluoroethylene (PTFE) fibril matrix, and(b) insoluble, non-swellable sorptive particles enmeshed in said matrix, the ratio of non-swellable sorptive particles to PTFE is in the range of 40:1 to 1:4 by weight, the composite article having a porosity in the range of 30 to 80 percent void volume and a mean pore size in the range of 0.3 to 5 micrometers, preferably with at least 90 percent of pores having a size less than 3.6 micrometers.The article is prepared by incorporating lubricant in the precursor admixture in an amount sufficient to exceed the lubricant sorptive capacity of the particles by at least 3 weight percent and up to an amount at which the mass loses its integrity.