摘要:
The present disclosure relates to illumination or lighting assemblies and systems that provide illumination using LEDs. In one aspect, the present disclosure provides a lighting assembly, comprising: multiple light emitting diodes that emit light; an optical system that directs the light emitted by the light emitting diodes, the optical system positioned adjacent to light emitting diodes; and a cooling fin including a two-phase cooling system, the cooling fin positioned adjacent to the light emitting diodes such that the two-phase cooling system removes heat from the light emitting diodes. In another aspect, the present disclosure provides a lighting system including multiple lighting assemblies. The lighting assemblies and systems of the present disclosure can be used in, for example, a street light, a backlight (including, for example, a sun-coupled backlight), a wall wash light, a billboard light, a parking ramp light, a high bay light, a parking lot light, a signage lit sign (also referred to as an electric sign), static signage (including, for example, sun-coupled static signage), illuminated signage, and other lighting applications.
摘要:
The present disclosure relates to illumination or lighting assemblies and systems that provide illumination using LEDs. In one aspect, the present disclosure provides a lighting assembly, comprising: multiple light emitting diodes that emit light; an optical system that directs the light emitted by the light emitting diodes, the optical system positioned adjacent to light emitting diodes; and a cooling fin including a two-phase cooling system, the cooling fin positioned adjacent to the light emitting diodes such that the two-phase cooling system removes heat from the light emitting diodes. In another aspect, the present disclosure provides a lighting system including multiple lighting assemblies. The lighting assemblies and systems of the present disclosure can be used in, for example, a street light, a backlight (including, for example, a sun-coupled backlight), a wall wash light, a billboard light, a parking ramp light, a high bay light, a parking lot light, a signage lit sign (also referred to as an electric sign), static signage (including, for example, sun-coupled static signage), illuminated signage, and other lighting applications.
摘要:
A backlight includes n1, n2, and n3 colored LED light sources of a first, second, and third (non-white) color respectively, and a drive circuit connected to these sources. The drive circuit is configured to drive each of the first, second, and third light sources within a specified percentage, such as 10%, of their respective maximum drive characteristics, and the numbers n1, n2, and n3 are selected so that light from the energized first, second, and third LED light sources, when combined, is substantially white. In some cases, the backlight also includes a number n4 of white LED sources, and the colored LED sources may or may not be driven within 10% of their maximum ratings. The number n4 of white sources is selected to increase the brightness of the backlight while maintaining the color gamut of the backlight output within a specified percentage, such as 10%, of a desired specification.
摘要:
Illumination devices whose function are to inject light into backlights, particularly into backlights that incorporate a recycling cavity formed by a front (50) and back (52) reflector, are described. In some embodiments, the device includes a light source (59) disposed proximate the back reflector, and first (42) and second (44) reflecting structures. The first reflecting structure includes an inner reflective surface (41b) at least a portion of which is inclined to form a wedge with the back reflector. The wedge partially collimates and directs light from the light source generally away from the recycling cavity. The second reflecting structure receives light exiting the wedge and redirects such light into an injection beam directed into the recycling cavity.
摘要:
Illumination devices having a partially transmissive front reflector, a back reflector, and a cavity between them are disclosed. At least one light injector including a baffle and a light source is disposed in the cavity. The light injector is capable of injecting partially collimated light into the cavity. The output area of the illumination device can be increased by disposing light injectors progressively within the cavity, without sacrificing uniformity of the light emitted through the output area.
摘要:
Illumination devices whose function are to inject light into backlights, particularly into backlights that incorporate a recycling cavity formed by a front (50) and back (52) reflector, are described. In some embodiments, the device includes a light source (59) disposed proximate the back reflector, and first (42) and second (44) reflecting structures. The first reflecting structure includes an inner reflective surface (41b) at least a portion of which is inclined to form a wedge with the back reflector. The wedge partially collimates and directs light from the light source generally away from the recycling cavity. The second reflecting structure receives light exiting the wedge and redirects such light into an injection beam directed into the recycling cavity.
摘要:
A backlight that includes a front reflector and a back reflector that form a hollow light recycling cavity including an output surface is disclosed. The backlight further includes one or more light sources disposed to emit light into the light recycling cavity. The front reflector includes an on-axis average reflectivity of at least 90% for visible light polarized in a first plane, and an on-axis average reflectivity of at least 25% but less than 90% for visible light polarized in a second plane perpendicular to the first plane.
摘要:
A backlight that includes a front reflector and a back reflector that form a hollow light recycling cavity including an output surface is disclosed. The backlight further includes one or more light sources disposed to emit light into the light recycling cavity. The front reflector includes an on-axis average reflectivity of at least 90% for visible light polarized in a first plane, and an on-axis average reflectivity of at least 25% but less than 90% for visible light polarized in a second plane perpendicular to the first plane.
摘要:
A hollow light-recycling backlight has a “semi-specular” component providing a balance of specularly and diffusely reflected light improving the uniformity of the light output. The component may be arranged on the reflectors (1021), (1014) or inside the cavity (1016). This balance is achieved by designing the component's “transport ratio” defined by (F−B)/(F+B), (F and B are the amounts of incident light scattered forwards and backwards respectively by the component in the plane of the cavity) to lie in a certain range. Furthermore, the product of the front and back reflector “hemispherical” reflectivities should also lie in a given range. Alternatively, the “cavity transport value”, a measure of how well the cavity can spread injected light from the injection point to distant points in the cavity should lie in a further range and the “hemispherical” reflectivity of the back reflector should be >0.7.
摘要:
A backlight unit (10) has a hollow cavity (16) instead of employing a light guide. One or more light sources (24a-c), such as LEDs, are arranged to emit light into the cavity, which is formed by a front (12) and a back reflector (14). The backlight is typically of the edge-lit type. The backlight can have a large area, is thin and consists of fewer components than conventional devices. Its design permits light recycling. The unit emits light of a predefined polarisation and can be arranged to have desired horizontal/vertical viewing angle properties. Light is uniformly distributed within the guide and the light output (20b, 2Od) is substantially collimated. Such backlights occupy a specific region in a parameter space defined by two parameters: first, the ratio of the output emission area to the total source emission area should lie in the range 0.0001 to 0.1; and second, the ratio of the SEP to the height of the cavity (H) should be in the range 3 to 10, where the SEP is an average plan view source separation, a special measure of the average spacing of light sources in the plane of the unit. There is also a discussion on the required number of light sources N, their arrangement near the periphery of the cavity, as well as the shape and size of the output emission area. A required minimum brightness uniformity (VESA) value to be maintained, when a subset of Madjacent sources is switched off (where M is at least 0.1 N or M>2 or both), is also disclosed. The backlight can be used for a display or for general lighting purposes.