摘要:
In a conductive antireflection film having predetermined optical characteristics, of the layers of the conductive antireflection film, two layers located on the transparent substrate side are replaced with a three-layered film having a metal oxide film as an intermediate layer thereof. In this three-layered film when k.sub.i =4n.sub.i d.sub.i .lambda..sub.0 (where n.sub.i is the refractive index of the ith layer, di is the geometric thickness of the ith layer, and .lambda..sub.0 is a middle wavelength in design), the metal oxide film as the second layer satisfies k.sub.2 .gtoreq.0.01, and an ITO film as the first layer satisfies k.sub.1 .gtoreq.0.1.
摘要:
In a conductive antireflection film having predetermined optical characteristics, of the layers of the conductive antireflection film, two layers located on the transparent substrate side are replaced with a three-layered film having a metal oxide film as an intermediate layer thereof. In this three-layered film, when k.sub.i =4n.sub.i d.sub.i /.lambda..sub.0 (where n.sub.i is the refractive index of the ith layer, di is the geometric thickness of the ith layer, and .lambda..sub.0 is a middle wavelength in design), the metal oxide film as the second layer satisfies k.sub.2 .gtoreq.0.01, and an ITO film as the first layer satisfies k.sub.1 .gtoreq.0.1.
摘要:
The prevent invention improves the film thickness distribution in the direction of revolution of substrates by a simple manner in a method for forming coating films, wherein a evaporating source 3 is disposed at a predetermined distance from substrates 2, and when a coating film material is applied from the evaporating source 3 onto the substrate surfaces while revolving the substrates 2, coating films are formed on the substrate surfaces in a condition where the radius of curvature of the substrates 2 obtained by bending the substrates 2 within the elasticity range is made equal to the radius of revolution of the substrates 2.
摘要:
The invention provides a touch panel including a first transparent substrate provided with a transparent conductive film on one surface thereof; a second transparent substrate provided with a transparent conductive film on one surface thereof, said first substrate and said second substrate being fixed in parallel with each other so that said transparent conductive films are opposed to each other; and a supporting member to regulate a distance between said opposite substrates, wherein a first four-layered transparent dielectric film is formed between a surface of at least one of the first and second transparent substrates and the corresponding transparent conductive film, a second four-layered transparent dielectric film is formed on an opposite surface to the surface on which the transparent conductive film is formed.
摘要:
A face panel for a cathode-ray tube is coated with an antireflection film by forming, on the outer surface thereof in this order, a 44.9 nm-thick praseodymium titanate film as a first layer, a 4.9 nm-thick film of a nickel-iron alloy as a second layer, a 53.4 nm-thick praseodymium titanate film as a third layer, a 3.9 nm-thick film of a nickel-iron alloy as a fourth layer, a 20.6 nm-thick praseodymium titanate film as a fifth layer, and an 84.7 nm-thick magnesium fluoride film as a sixth layer. This coated face panel is free from the problem that conventional cathode-ray tube face panels coated on the outer surface with an antireflection film comprising superposed metal films and transparent dielectric films make the cathode-ray tubes exhibit double images although effective in diminishing the reflection of external light on the surface of the cathode-ray tubes and in enhancing display contrast. The cathode-ray tube using the face panel coated with the specific antireflection film does not exhibit double images, is prevented from suffering static buildup on its surface or from reflecting external light thereon, and can attain higher image contrast.
摘要:
A substrate for a semi-transmitting type liquid crystal display element, which is capable of suppressing occurrence of display non-uniformity of the semi-transmitting type liquid crystal display element. A reflective mirror is formed by alternately forming in layers at least one first transparent dielectric film and at least one second transparent dielectric film on a transparent substrate. The first and second transparent dielectric films are different in refractive index from each other. The reflective mirror is formed between a liquid crystal section of the semi-transmitting type liquid crystal display element and the transparent substrate, and the first transparent dielectric film is made of a substantially photocatalytically inactive compound.
摘要:
A sputtering target according to the invention including an oxide sintered body containing NbOx and TiOx in which the abundance ratio of Ti atoms in the target is from 70% to 90% both inclusively. Preferably, the oxide sintered body has a specific resistance value not higher than 10Ω·cm. Preferably, theoxidesinteredbody has a thermal expansion coefficient not larger than 7 ×10−6/K and a thermal conductivity not lower than 10 ×10−4 cal/mm-K-sec.
摘要:
A substrate for reflection type liquid crystal display elements is provided, which has a multilayer dielectric film (reflective mirror) which can have fewer layers than according to the conventional art and can thus be formed in a shorter time, and which can stably obtain an optical characteristic of a desired flatness across the visible region, and moreover can prevent the occurrence of coloring due to reflection. The reflective mirror is formed on top of a transparent substrate, and is comprised of a predetermined number of high-refractive-index first transparent films and low-refractive-index second transparent films laminated alternately on the transparent substrate. Either or both of the first transparent films and the second transparent films are arranged such that the film thickness thereof increases progressively or decreases progressively with distance from the transparent substrate.
摘要:
An object of the invention, in the formation of a thin film on a synthetic resin, is to improve adhesiveness between the synthetic resin and the thin film by a relatively simple method. In the invention, a protective metallic layer is formed on a synthetic resin, and one thin film of (1) a semi-transmitting metallic mirror, (2) a total reflection metallic mirror, or (3) a transparent conductive film is formed. The material of the protective metallic layer is preferably selected from the group of Ti, Zr, Nb, Si, In, and Sn, and for sake of ensuring adhesiveness between the synthetic resin and the thin film, the film thickness of the protective metal layer is preferably 1 nm or more. Also, when the film thickness of the protective metallic layer is large, transmittance of the whole of the laminated film is lowered due to light absorption by the protective metallic layer, and hence, the film thickness of the protective metallic layer is preferably not more than 5 nm.
摘要:
A surface of a glass plate is coated with a first n-type semiconductor film which is a 50 nm-thick niobium oxide film as a primer layer. The primer layer is coated with a 250 nm-thick photocatalyst film comprising titanium oxide. Thus, an article having a photocatalytically active surface is obtained. The two coating films can be formed by sputtering. The first n-type semiconductor film as the primer layer is selected so as to have a larger energy band gap than the titanium oxide. Due to this constitution, more holes are generated near the film surface. This article can be free from the problem of conventional titanium oxide films having photocatalytic activity that it is difficult to generate many surface holes contributing to photocatalytic activity, because electrons and holes generated by charge separation recombine within the film, making it impossible to effectively heighten catalytic activity.