Abstract:
A pressure wave generator (1) includes a thermally conductive substrate (2), a heat insulating layer (3) formed on one main surface of the substrate (2), an insulator layer (5) formed on the heat insulating layer (3), and a heat generator (4) formed on the insulator layer (5) to generate heat when a current containing an alternating component is applied thereto. The heat insulating layer (3) is formed containing at least one of silicon nitride (Si3N4), silicon dioxide (SiO2), aluminum oxide (Al2O3), magnesium oxide (MgO), diamond crystalline carbon (C), aluminum nitride (AlN), and silicon carbide (SiC). The heat generator (4) is formed containing, for example, gold (Au) or tungsten (W).
Abstract translation:压力波发生器(1)包括导热基板(2),形成在基板(2)的一个主表面上的绝热层(3),形成在绝热层(3)上的绝缘体层(5) 以及形成在所述绝缘体层(5)上的热发生器(4),以在施加包含交替分量的电流时产生热量。 该绝热层(3)形成为含有氮化硅(Si 3 N 4),二氧化硅(SiO 2),氧化铝(Al 2 O 3),氧化镁(MgO),金刚石结晶碳(C),氮化铝(AlN) ,和碳化硅(SiC)。 形成有例如金(Au)或钨(W)的发热体(4)。
Abstract:
A method for manufacturing an interposer including a body and a plurality of probes connected to said body is disclosed. The method includes a step of manufacturing said body including the sub-steps of preparing a first substrate having one surface side and the other surface side and being capable of being processed by dry etching, forming a plurality of through holes in said first substrate by dry etching, and making said through holes into conductive holes capable of conducting electricity through a bottom-up fill process. The method also includes a step of manufacturing said plurality of probes and connecting the ends of said plurality of conductive holes on one surface side of said first substrate and a plurality of first probes on said second substrate.
Abstract:
A microstructure inspecting apparatus for evaluating a characteristic of at least one microstructure having a movable section formed on a substrate, includes: a probe, which electrically connects with pads formed on the microstructure, for obtaining an electric signal of the microstructure; a plurality of nozzles, positioned in the vicinity of the movable section of the microstructure, for discharging or sucking a gas; a nozzle flow rate controller for controlling a flow rate of the gas discharged from or sucked into the plurality of nozzles; and an evaluation unit for detecting a displacement of the movable section of the microstructure by using the electric signal obtained through the probe, wherein the displacement is made by the gas discharged from or sucked into the plurality of nozzles, and evaluating the characteristic of the microstructure based on the detected result.
Abstract:
A speaker unit has a plurality of sound sources each outputting a sound wave. The compressional, sound wave output from the speaker unit arrives, or vibrates air, which moves a movable part of a three-axis acceleration sensor, or a microstructure of a chip to be tested TP. As the movable part thus moves, a value in resistance accordingly varies, and such variation is measured as based on an output voltage provided via a probe. A control unit determines a property of the three-axis acceleration sensor from a value in property as measured or measurement data. Furthermore, the plurality of sound sources can be spaced by a pitch of a predetermined value set as based on their difference in the distance to the movable part of the three-axis acceleration sensor and the wavelength of the test wave to apply a composite test wave to the movable part such that the composite sound wave's composite sound field is maximized.
Abstract:
An electrostatic capacitance detection circuit 10 comprises an AC voltage generator 11, a first operational amplifier 14 of which non-inverting input terminal is connected to specific potential (a ground in this example), a second operational amplifier 16 that includes a voltage follower, a resistance (R1) 12 connected between the AC voltage generator 11 and an inverting input terminal of the first operational amplifier 14, a resistance (R2) 13 connected between the inverting input terminal of the first operational amplifier 14 and an output terminal of the second operational amplifier 16, and an impedance element (a capacitor) 15 connected between an output terminal of the first operational amplifier 14 and a non-inverting input terminal of the second operational amplifier 16, and a capacitor to be detected 17 is connected between the non-inverting input terminal of the second operational amplifier 16 and specific potential. The electrostatic capacitance detection circuit 10 and the capacitor 17 are located adjacently.
Abstract:
A capacitor C and an impedance converter Hiz are included in a feedback circuit of the first operational amplifier OP1 in series; an electrode P1 of a capacitive sensor is connected to a connection point of the said capacitor and the converter via a signal line L. The signal line L is connected to a predetermined standard electric potential through resistance R3 whose resistance value is high. When the capacitor is included in the feedback circuit, the signal line becomes in a state of floating and a circuit operation becomes unstable, however, the signal line L is fixed at predetermined electric potential, and therefore, the operation becomes stable. It is acceptable to configure the impedance converter with a voltage follower and connect the resistance R3 to the output.
Abstract:
In a manufacturing method for an interposer, a seed layer is formed at an opening portion in a through hole on back surface side of a substrate, an electrode layer for electroplated coating is formed based on the seed layer, and an electroplated coating layer is formed to fill the through hole from the electrode layer for electroplated coating layer to a front surface side. As a result, a manufacturing method for an interposer is provided in which the manufacturing process is simple and the void is not generated inside of the through hole.
Abstract:
A through substrate which comprises a silicon substrate (10) having a through hole (19) penetrating a front surface (11) and a back surface (12), a oxidized silicon film (13) being provided along the inner wall surface of the through hole (19), layers (14, 15) comprising Zn and Cu, respectively, being formed on the inner wall surface of the oxidized silicon film (13), and a Cu plating layer (18) which has been grown from a Cu seed layer (17) along the inner wall surface of layers (14, 15) comprising Zn and Cu, respectively, via an insulating layer (16) between them. The above through substrate can provide a through electrode capable of avoiding the noise due to the cross talk.
Abstract:
Voltage is applied to a chip TP by a voltage drive unit 30 through a probe needle P to move a movable part of a microstructure. A sound produced in response to motion of the movable part of the microstructure is detected by a microphone 3. Then, the sound detected by the microphone 3 is measured by a measurement unit 25. The control unit 20 evaluates the characteristics of the tested chip TP by comparing with a sound detected from an ideal chip TP.
Abstract:
Disclosed is an interposer comprising a silicon substrate (20). A plurality of conductive holes (27) penetrating the silicon substrate (20) are formed by dry etching, and at least one end of each conductive hole (27) is provided with a probe (12) via a pad (45). Since conductive holes are formed in a substrate that can be processed by dry etching, a plurality of microscopic conductive holes can be continuously formed and a probe can be connected to each conductive hole. Consequently, there can be obtained an interposer wherein probes are arranged at high density.