摘要:
There is described a method of manufacturing a semiconductor device of dual-gate construction, which method prevents occurrence of a highly-resistant local area in a gate electrode of dual-gate construction. A polysilicon layer which is to become a conductive layer of a gate electrode of dual-gate construction is formed on an isolation oxide film. N-type impurities are implanted into an n-type implantation region of the polysilicon film while a photoresist film is taken as a mask. P-type impurities are implanted into a p-type impurity region of the polysilicon film 3 while another photoresist film is taken as a mask. Implantation of n-type impurities and implantation of p-type impurities are performed such that an overlapping area to be doped with these impurities in an overlapping manner is inevitably formed.
摘要:
A semiconductor device having a memory cell region comprising a plurality of memory cells is described, and a stable characteristic is imparted to all the memory cells provided in the memory cell block. Impurities are implanted into a memory cell region of a silicon substrate at predetermined intervals, thus forming a plurality of wells. A resist film used as a mask for implanting impurities has strip-shaped patterns and a broad pattern. Since the strip-shaped patterns located close to the broad pattern are inclined, the characteristics of the wells located in the vicinity of the outer periphery of the memory cell region become unstable. The wells having unstable characteristics are taken as dummy wells which do not affect the function of a semiconductor device.
摘要:
There is described a semiconductor device intended to increase a degree of integration of transistor without impairing a desired element characteristic. An n-type source region and an n-type drain region are formed in a p-well which acts as a substrate region of an NMOS transistor. Further, there are formed a first contact plug to be electrically connected to the n-type source region and a second contact plug to be electrically connected to the n-type drain region. The n-type source region is provided so as to become short-circuited with the p-well. The n-type drain region is provided so as not to become short-circuited with the p-well. The n-type source region is formed so as to become smaller than the n-type drain region.
摘要:
In an MIM capacitor element, a leak guard that covers an upper layer electrode layer is provided between upper layer electrode layer and a reflection prevention film and, therefore, a region is not formed wherein upper layer electrode layer and reflection prevention film make a direct contact with each other. As a result, it becomes possible to completely prevent the generation of a leak current between upper layer electrode layer and reflection prevention film. Thus, an improvement in the structure of the MIM capacitor element and an improvement in a manufacturing process for the same can be achieved, thereby it becomes possible to provide a semiconductor device wherein the reliability of the MIM capacitor element can be enhanced.
摘要:
A semiconductor device and a manufacturing method thereof permitting the quality of gate insulating films to be prevented from deteriorating and thereby permitting electrical characteristics of the device to be prevented from deteriorating are provided. In a semiconductor device including a plurality of field effect transistors, an oxidation protection film 21 is formed on a side of one gate electrode 19.
摘要:
A semiconductor device and a manufacturing method thereof permitting the quality of gate insulating films to be prevented from deteriorating and thereby permitting electrical characteristics of the device to be prevented from deteriorating are provided. In a semiconductor device including a plurality of field effect transistors, an oxidation protection film 21 is formed on a side of one gate electrode 19.
摘要:
A semiconductor device more reduced in size and a manufacturing method thereof are provided. A gate electrode is covered with a silicon nitride film having a selecting ratio greater than an NSG film under a prescribed etching condition. A cobalt suicide film is formed on an upper surface of source/drain regions. Furthermore, a refractory metal silicide film forming the gate electrode is formed by a cobalt silicide film.
摘要:
A lower metal layer is provided on a lower interlayer insulating film in an MIM capacitance element forming region. The lower metal layer is formed by the same step as that in which the lower interconnection layer is formed. A dielectric layer and an upper metal layer patterned using the same mask are provided on the lower metal layer. The upper metal layer is formed to have a thickness that is thinner than the thickness of the lower metal layer. Thus, it becomes possible to achieve high reliability (lifetime) of the MIM capacitance element by improving the structure of the MIM capacitance element as well as the manufacturing steps.
摘要:
A semiconductor device and a manufacturing method thereof permitting the quality of gate insulating films to be prevented from deteriorating and thereby permitting electrical characteristics of the device to be prevented from deteriorating are provided. In a semiconductor device including a plurality of field effect transistors, an oxidation protection film 21 is formed on a side of one gate electrode 19.