摘要:
A phase comparison circuit detects a phase difference between a data signal and the output from a variable delay circuit. A Code Operator detects a value of a control code corresponding to a delay equal to one period of an output clock. Then, when a delay amount of the variable delay circuit exceeds one period of a clock during synchronization of the output clock with the data signal while the control code is changed in accordance with the detection result by the phase delay circuit, a control code corresponding to a delay equal to one period of the output clock is added or subtracted to/from the control code at a time. Therefore, even if there is a difference in frequency between a data signal and a clock, it becomes possible to synchronize the data signal and the clock with application of the same clock phase.
摘要:
PD detects a phase difference between DATA and VDL output from VDL. Code Operator detects a value of a control code corresponding to a delay equal to one period of an output clock. Then, when a delay amount of VDL exceeds one period of a clock during synchronization of the output clock with the data signal while the control code is changed in accordance with the detection result by PD, a control code corresponding to a delay equal to one period of the output clock is added or subtracted to/from the control code at a time. Therefore, even if there is a difference in frequency between a data signal and a clock, it becomes possible to synchronize the data signal and the clock with application of the same clock phase.
摘要:
A phase comparison circuit detects a phase difference between a data signal and the output from a variable delay circuit. A Code Operator detects a value of a control code corresponding to a delay equal to one period of an output clock. Then, when a delay amount of the variable delay circuit exceeds one period of a clock during synchronization of the output clock with the data signal while the control code is changed in accordance with the detection result by the phase delay circuit, a control code corresponding to a delay equal to one period of the output clock is added or subtracted to/from the control code at a time. Therefore, even if there is a difference in frequency between a data signal and a clock, it becomes possible to synchronize the data signal and the clock with application of the same clock phase.
摘要:
A phase comparison circuit detects a phase difference between a data signal and the output from a variable delay circuit. A Code Operator detects a value of a control code corresponding to a delay equal to one period of an output clock. Then, when a delay amount of the variable delay circuit exceeds one period of a clock during synchronization of the output clock with the data signal while the control code is changed in accordance with the detection result by the phase delay circuit, a control code corresponding to a delay equal to one period of the output clock is added or subtracted to/from the control code at a time. Therefore, even if there is a difference in frequency between a data signal and a clock, it becomes possible to synchronize the data signal and the clock with application of the same clock phase.
摘要:
Assuming that clocks in an A clock driver (102), a B clock driver (103) and a CMOS buffer circuit (119) have delay values Ta, Tb and Td, respectively, a delay value Ta−Td is stored in a register circuit (117) when terminals “0” of selector circuits (114, 115, 116) are selected, and a delay value Ta−Td−Tb is stored in a register circuit (118) when the terminals “0” are switched to “1”. Thus, determining a delay value at the CMOS buffer circuit (119) allows a phase difference between the A clock driver (102) and B clock driver (103) to be determined.
摘要:
In a power supply system, reducing influence of a noise etc., optimal electric power is supplied corresponding to power consumption of a receiving side load, and power consumption is decreased greatly. When a potential difference detector 12 detects that a power supply voltage of the receiving side load is decreased lower than a lower limit voltage threshold or increased higher than an upper limit voltage threshold, a burst interval setting unit sets up a burst signal of a pulse width corresponding to the detection result. A burst signal generator generates a burst signal based on the setup, and excites a control primary inductor. A burst signal detector generates a pulse signal in response to electromotive force of a control secondary inductor. A pulse width controller determines increase or decrease of the voltage value of the receiving side load from a no-signal period of a pulse signal, measured by a no-signal period measuring unit, and modifies and outputs a signal outputted by a alternating current generator so as to change a period or the number of times to excite a power primary inductor.
摘要:
Provided is a disconnection and short detecting circuit capable of detecting disconnection and short of a signal line transmitting a differential clock signal. A differential buffer part DB1 has a first comparator to compare a non-inverting clock signal inputted from a PADI and an inverting clock signal inputted from a PADR; a second comparator to compare a non-inverting clock signal and a reference potential Vref; and a third comparator to compare an inverting clock signal and the reference potential Vref. Their respective outputs are defined as Y, YI and YR, respectively. If the signal line of either a non-inverting clock signal or an inverting clock signal is disconnected, or short-circuited to a grounding potential VSS of a logical value Low, the logical values outputted from the second and the third comparators are equal for a long period of time in one cycle of the non-inverting clock signal or the inverting clock signal. Thereby, if a second D-flip-flop circuit F2a negates an output signal [CD], it is able to judge that disconnection or short occurs.
摘要:
There are provided a lock detector that does not output a lock detecting signal of incorrect content even when approaching phase synchronization, when an input signal stops suddenly, or when a phase difference becomes zero momentarily in the progress that an output signal is synchronized with an input signal, as well as a PLL circuit including this lock detector. Specifically, a PLL circuit includes a lock detector (20) which comprises a reset signal output part (6, 7, 22 to 24) that outputs a reset signal (Pe) upon a phase difference between an input signal (f1) and a feedback signal (f2); and a D-FF circuit (8) that does not output a lock detecting signal (SL) upon receipt of the reset signal. The feedback signal (f2) is inputted to an NAND circuit (23) such that the reset signal is also based on the signal change of the feedback signal (f2). Further, a counter (21) performing output when the input signal (f1) reaches N-cycle is used for the clock of the D-FF circuit (8).
摘要:
A skew due to distribution of a clock inside a gate array is reduced. Phase comparators (14A), (14B) and (14C) are prepared in the peripheral portion of an internal circuit 71. The phase comparator (14C) is selected which is located nearest an element (77C) which receives an internal clock signal (65C) which is to be synchronized in terms of phase with an external clock signal (73). The selected phase comparator (14C) is connected to a charge pump circuit (16). Without forming a plurality of PLL circuits except for the phase comparators, the phase of any desired internal clock signal is synchronized with the phase of the external clock signal.
摘要:
A PLL circuit apparatus in accordance with the present invention includes a phase comparator, a delay circuit, a NOR circuit, and a loop filter. The phase comparator detects a phase difference between a reference clock signal and an internal clock signal. The delay circuit delays the reference clock signal by a delay time of an output of the phase comparator. The NOR circuit determines which pulse width is larger of a phase difference detecting signal from the phase comparator or of the delayed reference clock signal. The loop filter has its gain changed in response to an output of the NOR circuit. Thus, it is possible to shorten a synchronization pull-in time and accurately detect a deviation in synchronization. In addition, if a gain control signal is reset on the basis of logic states of a reference clock signal and an internal clock signal in accordance with rising edges and falling edges of the clock signals, it is possible to generate successive gain control signals.