摘要:
The present invention is a process to express a target peptide in a large amount and accumulate the target peptide in host cells in the form of inclusion bodies. The process comprises: A) culturing host cells transformed with a plasmid able to express a gene coding for a fusion protein represented in the formula A--L--B, wherein B is a target peptide, A is a protective peptide comprising a 90-210 amino acid fragment E. coli .beta.-galactosidase, and L is a linker peptide positioned between the C-terminus of the protective peptide and the N-terminus of the target peptide and selected so that when the fusion protein is treated by an enzyme or chemical substance, the target peptide is separated, and wherein the protective peptide and linker peptide are selected so that the isoelectric point of the fusion protein in between 4.9 and 6.9; B) obtaining an insoluble fraction comprising inclusion bodies by homogenization of th cultured transformed cells; C) solubilizing the fusion protein in the inclusion bodies by treatment of the insoluble fraction with a solubilizing agent; and, D) cleaving the peptide bond between the C-terminus of the linker peptide and the N-terminus of the target peptide of the solubilized fusion protein to release the target peptide from the other peptides followed by purification of the target peptide.
摘要:
A process for the production of a desired polypeptide comprising the steps of: (1) transforming host cells with an expression vector comprising a gene coding for a fusion protein comprising a desired polypeptide and a protective polypeptide; (2) culturing the transformed host cells so as to express said gene to produce a fusion protein; and (3) excising the desired polypeptide from the fusion protein with a protease intrinsic to the host cells. According to the present invention, a large amount of a desired polypeptide can be produced at a low cost. Especially according to the present invention, a large amount of S. aureus V8 protease can be efficiently produced at low cost using a safe host such as E. coli according to gene recombination procedures.
摘要:
Mutant proteases are obtained with one or more mutation sites in the natural V8 protease protein, and with enzyme activities even in the presence of high urea concentrations. Inactivation of enzyme activity is minimized even in the presence of high concentrations of urea, to thus allow lower amounts of enzyme to be added to urea-containing reaction systems and shorten reaction times. As an additional advantage, the ability to cleave proteins in the presence of high urea concentrations makes it possible to obtain hitherto unobtainable peptide fragments.
摘要:
The present invention provides a transformed cell which is transformed by at least one gene of enzymes participating in biosynthesis of tetrahydrobiopterin and a process for the production of a biopterin compound using the same. In accordance with the present invention, the biopterin compound can be produced in large quantities in an industrial advantageous manner from less expensive materials.
摘要:
Methods of using OmpT protease are provided. In particular, the invention provides for a method of controlling cleavage of a polypeptide by OmpT protease comprising, converting a sequence site comprising two arbitrary consecutive amino acids and/or amino acid(s) in the vicinity of the site in the polypeptide into other amino acids; which method comprises setting lysine or arginine as the amino acid at the −1-position concerning the site and setting a specific amino acid as the amino acid at the +1-position; and/or setting specific amino acid(s) as the amino acid(s) at the −4-position and/or the −6-position relative to the site; so that a desired part of the polypeptide is cleaved by OmpT protease and/or an undesired part of the polypeptide is not (or hardly) cleaved by OmpT protease. A method of producing a target polypeptide is also provided.
摘要:
The present invention provides a transformed cell which is transformed by at least one gene of enzymes participating in biosynthesis of tetrahydrobiopterin and a process for the production of a biopterin compound using the same. In accordance with the present invention, the biopterin compound can be produced in large quantities in an industrial advantageous manner from less expensive materials.
摘要:
A method for reducing the formation of a byproduct polypeptide containing an O-acetylserine residue in place of a serine residue by adding at least one of histidine, methionine or glycine to the medium in a method for producing a polypeptide containing a serine residue by culturing transformed cells, and a method for producing a polypeptide containing a serine residue by culturing transformed cells, characterized by reducing the formation of a byproduct polypeptide containing an O-acetylserine residue in place of a serine residue by adding at least one of histidine, methionine or glycine to the medium.
摘要:
A lactose repressor protein wherein at least one amino acid at the position of 94, 241, 265 or 300 in the wild lactose repressor is replaced with an amino acid other than that of the wild lactose repressor, and the use thereof.The present mutant lactose repressor represses the expression of a desired gene at 30.degree. C. or lower temperature, and induces the expression of a desired gene at 37.degree. C. or higher temperature, and therefor can control the expression by change of a culture temperature without using an expensive inducer such as IPTG.
摘要:
A C-terminal &agr;-amidating enzyme of Xenopus laevis and precursor thereof produced by a recombinant DNA technique; a DNA coding for the enzyme or precursor thereof; a plasmid containing the DNA; a host organism transformed with the plasmid; a process for production of the enzyme using the transformant; and a process for production of a C-terminal &agr;-amidated peptide using the enzyme.
摘要:
Escherichia coli plasmid vectors are provided which have a 5'-terminal untranslated region (inclusive of the promoter region and Shine-Dalgarno sequence) of the Escherichia coli lipoprotein gene, which region is improved to thereby enable direct production of useful polypeptides in substantially complete form.