Abstract:
Systems and methods for applying different color calibrations at different locations in an imaging photometer measurement are disclosed herein. In one embodiment, a method for measuring a light source having a first area with a first spectral distribution and a second area having a second spectral power distribution can include selecting one or more data points in the first area for measurement. The method then includes applying a calibration to the selected data points in the first area such that a desired colorimetric result is displayed for each data point in a single colorimetric measurement of the first area. In several embodiments, the method can further include selecting one or more data points in the second area, and applying a different calibration to the selected portions of the second area such that a desired colorimetric result is also displayed for each data point in the second area.
Abstract:
A solid state light (“SSL”), a solid state emitter (“SSE”), and methods of manufacturing SSLs and SSEs. In one embodiment, an SSL comprises a packaging substrate having an electrical contact and a light emitting structure having a front side and a back side. The back side of the light emitting structure is superimposed with the electrical contact of the packaging substrate. The SSL can further include a temperature control element aligned with the light emitting structure and the electrical contact of the packaging substrate.
Abstract:
A solid state light (“SSL”), a solid state emitter (“SSE”), and methods of manufacturing SSLs and SSEs. In one embodiment, an SSL comprises a packaging substrate having an electrical contact and a light emitting structure having a front side and a back side. The back side of the light emitting structure is superimposed with the electrical contact of the packaging substrate. The SSL can further include a temperature control element aligned with the light emitting structure and the electrical contact of the packaging substrate.
Abstract:
An interactive display system that includes an interactive display screen. An illuminator is positioned to illuminate one of the inner or outer surfaces of the display screen. At least two cameras are placed so as to view the illuminated surface of the display screen. Each of at least one of the cameras are positioned such that specular reflections from the illuminator are received by the camera. The images from the different cameras are merged to form a merged image in which specular reflections are reduced or even cancelled.
Abstract:
A smoothing technique for processing digital images is presented. The smoothing technique of this invention comprises a two-dimensional digital hysteresis filter which utilizes a "two-dimensional automatically adjusting variable mask" for intensity processing. As a result, the filter is independent of the image size and content and cannot alter the size of any significant intensity features, even if they are as small as one pixel in size. The intensity processing technique provides the basis for a separation of the image information into basic information groups. The two-dimensional hysteresis smoothing technique of this invention calculates the intensity value of smoothed pixels using a set of one-dimensional hysteresis lines at various angles running through each pixel in an image. Each one-dimensional hysteresis line calculates a new intensity value for each pixel in an image. These one-dimensional hysteresis values are added together and divided by the number of hysteresis lines to get the output values for the pixel. This operation requires complex processing and is preferably realized through a massively parallel processing array processor which allows near-real time processing speeds on 1K.times.1K images.
Abstract:
An apparatus for dispersing and/or transporting/migrating particles such as toner that may be prone to agglomeration in a particle dispensing system. Movement and/or vibration of the dispersing and migrating plate member serves to break up, clear and prevent particle agglomerations. Perforations, slits or mesh areas in the upper surface of the plate member can prevent oversize particles/agglomerations from passing through the system, while side walls, fins or disposing the plate member at a angle can channelize the dispersion of the particles contacting the upper surface of the plate member.
Abstract:
A vaccum ring is coupled to a vacuum source and utilized to de-air a laminated glass assembly while it is positioned within a pressurized and heated autoclave unit. The vacuum ring has a channel for receiving the edge of the glass assembly and is fabricated to minimize the extrusion of the laminating material during the autoclave operation. The walls of the channel each have a single longitudinally extending groove approximately centered between the edges of the wall, and the floor of the channel includes a single longitudinally extending groove positioned to be adjacent the edge of a laceration shield layer of the glass assembly. All three grooves interconnect with the vacuum source. The channel generally conforms to the outer edge of the glass assembly with or without applied vacuum of pressure, and the provision of grooved walls greatly enhances the sealing of the ring to the glass.
Abstract:
An interactive display system that includes an interactive display screen. An illuminator is positioned to illuminate one of the inner or outer surfaces of the display screen. At least two cameras are placed so as to view the illuminated surface of the display screen. Each of at least one of the cameras are positioned such that specular reflections from the illuminator are received by the camera. The images from the different cameras are merged to form a merged image in which specular reflections are reduced or even cancelled.
Abstract:
A color calibration method for an imaging color measurement device utilizes a detector array, a plurality of optical elements, and multiple instances of irradiation of the detector array for a single measurement. A flat-fielding correction error correction matrix of the imaging color measurement device for each instance of irradiation of the detector array is obtained prior to color calibration. The response for each instance of irradiation of the detector array is flat-fielded with the corresponding error matrix to obtain a flat-fielded, spectrally weighted irradiance response for each instance of irradiation of the detector array. An illuminant light source with known spectral output or chromaticity coordinates is measured to obtain an irradiance response of the imaging color measurement device for each instance of irradiation of the detector array. A color correction coefficient is calculated using the known spectral output and chromaticity coordinates of the light source and the corresponding flat-fielded irradiance response.
Abstract:
A multi-point calibration method is provided for an imaging light and color measurement device. A light emitting surface with a plurality of light emitting areas is provided. The luminance or color of each light emitting area of the light emitting surface at a specific angle is measured using a spot measurement instrument. By aligning the spot measurement instrument with one of the light emitting areas at a time, the luminance or color of the light emitting areas of the light emitting surface is measured. A measurement of the light emitting surface is made with the imaging light and color measurement device. A matrix of correction factors is calculated to correct the areas as measured by the imaging light and color measurement device to be equivalent to those measured by the spot photometer. While a display device is measured by the imaging light and color measurement device, the measured luminance or color values thereof are corrected by the screen gain correction matrix.