摘要:
A method of removing photoresist and residue from a substrate begins by maintaining supercritical carbon dioxide, an amine, and a solvent in contact with the substrate so that the amine and the solvent at least partially dissolve the photoresist and the residue. Preferably, the amine is a tertiary amine. Preferably, the solvent is selected from the group consisting of DMSO, EC, NMP, acetyl acetone, BLO, acetic acid, DMAC, PC, and a mixture thereof. Next, the photoresist and the residue are removed from the vicinity of the substrate. Preferably, the method continues with a rinsing step in which the substrate is rinsed in the supercritical carbon dioxide and a rinse agent. Preferably, the rinse agent is selected from the group consisting of water, alcohol, a mixture thereof, and acetone. In an alternative embodiment, the amine and the solvent are replaced with an aqueous fluoride.
摘要:
A method of depositing a metal film on a substrate includes a supercritical preclean step, a supercritical desorb step, and a metal deposition step. Preferably, the preclean step comprises maintaining supercritical carbon dioxide and a chelating agent in contact with the substrate in order to remove an oxide layer from a metal surface of the substrate. More preferably, the preclean step comprises maintaining the supercritical carbon dioxide, the chelating agent, and an acid in contact with the substrate. Alternatively, the preclean step comprises maintaining the supercritical carbon dioxide and an amine in contact with the oxide layer. The desorb step comprises maintaining supercritical carbon dioxide in contact with the substrate in order to remove adsorbed material from the substrate. The metal deposition step then deposits the metal film on the substrate without exposing the substrate to an oxidizing material which oxidizes the metal surface of the precleaned substrate and without exposing the substrate to a nonvolatile adsorbing material which adsorbs to the substrate. An apparatus for depositing the metal film on a substrate includes a transfer module, a supercritical processing module, a vacuum module, and a metal deposition module. The supercritical processing module is coupled to the transfer module. The vacuum module couples the metal deposition module to the transfer module. In operation, the apparatus for depositing the metal film performs the supercritical preclean step, the supercritical desorb step, and the metal deposition step.
摘要:
A method of depositing a metal film on a substrate includes a supercritical preclean step, a supercritical desorb step, and a metal deposition step. Preferably, the preclean step includes maintaining supercritical carbon dioxide and a chelating agent in contact with the substrate in order to remove an oxide layer from a metal surface of the substrate. More preferably, the preclean step includes maintaining the supercritical carbon dioxide, the chelating agent, and an acid in contact with the substrate. Alternatively, the preclean step includes maintaining the supercritical carbon dioxide and an amine in contact with the oxide layer. The desorb step includes maintaining supercritical carbon dioxide in contact with the substrate in order to remove adsorbed material from the substrate. The metal deposition step then deposits the metal film on the substrate without exposing the substrate to an oxidizing material which oxidizes the metal surface of the precleaned substrate and without exposing the substrate to a nonvolatile adsorbing material which adsorbs to the substrate. An apparatus for depositing the metal film on a substrate includes a transfer module, a supercritical processing module, a vacuum module, and a metal deposition module. The supercritical processing module is coupled to the transfer module. The vacuum module couples the metal deposition module to the transfer module. In operation, the apparatus for depositing the metal film performs the supercritical preclean step, the supercritical desorb step, and the metal deposition step.
摘要:
An oxidizing slurry for removal of low dielectric constant materials. The slurry is formed utilizing non-oxidizing particles with a separate oxidizing agent, oxidizing particles alone or reducible abrasive particles with a compatible oxidizing agent. The particles can be formed of a metal oxide, nitride, or carbide material, by itself or mixtures thereof, or can be coated on a core material such as silicon dioxide or can be coformed therewith. A preferred oxidizing slurry is multi-modal in particle size distribution. Although developed for utilization in CMP semiconductor processing the oxidizing slurry of the present invention also can be utilized for other high precision polishing processes.
摘要:
Dielectric compositions encompassing one or more poly(arylene ether) polymers are provided. The dielectric compositions have the repetitive structural unit: ##STR1## where n=0 to 1; m=0 to 1-n; and Y.sub.1, Y.sub.2, Ar.sub.1 and Ar.sub.2 are each a divalent arylene radical, Y.sub.1 and Y.sub.2 derived from biphenol compounds, Ar.sub.1 derived from difluoroarylethynes and Ar.sub.2 derived from difluoroaryl compounds. Where both Y.sub.1 and Y.sub.2 are derived from fluorene bisphenol, n=0.1 to 1. Such poly(arylene ether) polymers are employed with a variety of microelectronic devices, for example, integrated circuits and multichip modules.