摘要:
Provided are a method of manufacturing nanoelectrode lines. The method includes the steps of: sequentially forming an insulating layer, a first photoresist layer, and a drop-shaped second photoresist on a substrate; disposing an imprint mold having a plurality of molding patterns over the second photoresist; applying pressure to the mold to allow the second photoresist to flow into the mold patterns; irradiating ultraviolet (UV) light onto the mold to cure the second photoresist; removing the mold from the cured second photoresist and patterning the second photoresist; patterning the first photoresist layer using the patterned second photoresist as a mask; patterning the insulating layer; and forming a metal layer between the patterned insulating layers. In this method, metal electrode lines are formed between insulating layers using an imprint lithography process, so that nanoelectronic devices can be freed from crosstalk between the metal electrode lines.
摘要:
Provided are a method of manufacturing nanoelectrode lines. The method includes the steps of: sequentially forming an insulating layer, a first photoresist layer, and a drop-shaped second photoresist on a substrate; disposing an imprint mold having a plurality of molding patterns over the second photoresist; applying pressure to the mold to allow the second photoresist to flow into the mold patterns; irradiating ultraviolet (UV) light onto the mold to cure the second photoresist; removing the mold from the cured second photoresist and patterning the second photoresist; patterning the first photoresist layer using the patterned second photoresist as a mask; patterning the insulating layer; and forming a metal layer between the patterned insulating layers. In this method, metal electrode lines are formed between insulating layers using an imprint lithography process, so that nanoelectronic devices can be freed from crosstalk between the metal electrode lines.
摘要:
Provided is a method of patterning a catalyst using nano imprint lithography. The method includes slurrying a catalyst, preparing a stamp for forming a catalyst pattern, forming the catalyst pattern by coating a substrate with the catalyst slurry, imprinting the stamp on the catalyst slurry and performing patterning simultaneously with calcination through nano imprint lithography, and drying the patterned catalyst. As the catalyst pattern is formed through the nano imprint lithography, a surface area of the catalyst increases and it is easy to pattern the catalyst according to the shape of the stamp.
摘要:
Provided is a method of patterning a catalyst using nano imprint lithography. The method includes slurrying a catalyst, preparing a stamp for forming a catalyst pattern, forming the catalyst pattern by coating a substrate with the catalyst slurry, imprinting the stamp on the catalyst slurry and performing patterning simultaneously with calcination through nano imprint lithography, and drying the patterned catalyst. As the catalyst pattern is formed through the nano imprint lithography, a surface area of the catalyst increases and it is easy to pattern the catalyst according to the shape of the stamp.
摘要:
The present invention relates to a novel graphene oxide reducing agent and a method for manufacturing a reduced graphene oxide from graphene oxide using same. More particularly, in the present invention, the reduced graphene oxide is manufactured by reducing a graphene oxide using a reducing agent containing a halogen element, and is applicable as an electric conductor, a semiconductor, and an insulator in various fields.
摘要:
The present invention relates to a non-powered constant-temperature cell transfer device, in which a first container, which accommodates living animal cells and a culture solution, is accommodated in a second container having a heat generating unit that emits heat generated by oxidation and reduction reactions of metal by introducing oxygen in the atmosphere in order to continuously provide an optimum culture temperature to a culture container even without being supplied with electric power, thereby maintaining activity and viability of the cells by maintaining a culture environment optimal for proliferation of the cells accommodated in the first container.
摘要:
Provided are a compound for a molecular electronic device which includes a terpyridine-ruthenium organic metal compound including a thiol anchoring group of the formula below, a method of synthesizing the compound and a molecular electronic device including a molecular active layer obtained from the compound. In the formula, R1 and R2 are each a thioacetyl group or a hydrogen atom, at least one of R1 and R2 is a thioacetyl group, and m and n are each integers from 0 to 20. The molecular active layer, which is formed by self-assembling the compound on an electrode surface, composes a switching element and a memory element.
摘要:
Disclosed herein is a GO-Gd-DTPA (gadolinium-diethylenetriamine pentaacetic-graphene oxide) complex, which is formed by an ester bond of graphene oxide (GO) and gadopentetic acid (Gd-DTPA). Since the GO-Gd-DTPA can stably exist in the body because it has high stability in water, it is expected that it can be effectively used as an MRI contrast agent.
摘要:
Provided are a method for preparing polymer actuators with high stability and polymer actuators prepared by the method, and more specifically, to a method for preparing polymer actuators with high stability that use low power, are extremely thin, and can be substituted in a motor of a camera module, and polymer actuators prepared by the method. The method includes the steps of: preparing an Ionic Polymer Metal Composite (IPMC) in which metal electrodes are plated on both surfaces of a ionic polymer film; removing water from the ionic polymer film of the IPMC; and expanding the IPMC in a polar solvent that has a higher boiling point and a lower freezing point than water.
摘要:
In the organic electroluminescence (EL) device containing a bis-condensed derivative of 4-(dicyanomethylene)-2-methyl-6-(para-(dimethylaminostyryl)-4H-pyran, and the preparation thereof, the inventive organic electroluminescence device has a high luminescent efficiency and color coordinates based on a high purity, and is further simple in a synthesis and is prominent in a thermal stability, thereby providing great merits to a mass production of the organic electroluminescence device.