摘要:
Provided is a method of manufacturing a shallow trench isolation (STI) film without voids or added processes. In one embodiment, the method of manufacturing an STI film includes forming a pad oxide pattern film and a silicon nitride film pattern, which define an isolation region, on a semiconductor substrate, and forming a trench by etching the semiconductor substrate to a predetermined depth using the pad oxide film pattern and the silicon nitride film pattern as masks. The resultant semiconductor substrate having the trench may be then dipped in a chemical solution containing ozone to pullback side walls of the silicon nitride film pattern. Afterward, the STI film can be formed by filling the trench with an insulating film.
摘要:
A wafer having a dielectric layer and an electrode partially protruding from the top surface of the dielectric layer is provided. The dielectric layer is etched with a chemical solution such as LAL. Prior to etching, the protruding portion of the electrode is removed or reduced to prevent any bubbles included in the chemical solution from adhering to the electrode. Thus, the chemical solution can etch the dielectric layers without being blocked by any bubbles included in a chemical solution.
摘要:
A wafer having a dielectric layer and an electrode partially protruding from the top surface of the dielectric layer is provided. An etchant or chemical solution is applied to the dielectric layer and bubbles in the etchant are prevented from adhering to the electrode. In one embodiment, prior to etching, the protruding portion is covered with a buffer layer to prevent bubbles in the etchant from adhering to the electrode. Thus, the etchant can etch the dielectric layers without being blocked by bubbles included therein.
摘要:
A wafer having a dielectric layer and an electrode partially protruding from the top surface of the dielectric layer is provided. The dielectric layer is etched with a chemical solution such as LAL. Prior to etching, the protruding portion of the electrode is removed or reduced to prevent any bubbles included in the chemical solution from adhering to the electrode. Thus, the chemical solution can etch the dielectric layers without being blocked by any bubbles included in a chemical solution.
摘要:
Provided is a method of fabricating a shallow trench isolation (STI) structure having a high aspect ratio and improved insulating properties. The exemplary method includes filling a shallow trench isolation region opening with an undoped polysilicon layer, removing an upper portion of the undoped polysilicon layer to form a second opening having a reduced aspect ratio relative to the original opening and filling the second opening with an insulating material to complete the STI structure. Additional protective layers including silicon oxide, silicon nitride and/or a capping layer may be provided on the sidewalls of the opening before depositing the undoped polysilicon.
摘要:
Methods of forming an electronic structure can include forming an interlayer insulating layer on a substrate, and forming a storage node comprising a base and sidewalls extending away from the base. The interlayer insulating layer can have a contact hole therein exposing a portion of the substrate. Moreover, the storage node base can be in the contact hole and the sidewalls can extend away from the base and away from the substrate with portions of the sidewalls being within the contact hole and with portions of the sidewalls extending outside the contact hole beyond the interlayer insulating layer away from the substrate. Related structures are also discussed.
摘要:
A method of manufacturing a semiconductor device includes forming an insulation pattern over a substrate. The insulation pattern has at least one opening that exposes a surface of the substrate. Then, a first polysilicon layer is formed over the substrates such that the first polysilicon layer fills the opening. The first polysilicon layer also includes a void therein. An upper portion of the first polysilicon layer is removed such that void expands to a recess and the recess is exposed. A second polysilicon layer is formed over the substrate such that the second polysilicon layer fills the recess.
摘要:
In an etching method, a thin layer is formed on a first surface of a first substrate doped with first impurities having a first doping concentration. The thin layer is doped with second impurities having a second doping concentration lower than the first doping concentration. A second substrate is formed on the thin layer. A second surface of the first substrate is polished. The polished first substrate is cleaned using a cleaning solution including ammonia and deionized water. The cleaned first substrate is etched to expose the thin layer.
摘要:
Methods of forming non-volatile memory devices include the steps of forming a semiconductor substrate having first and second floating gate electrodes thereon and an electrically insulating region extending between the first and second floating gate electrodes. A step is then performed to etch back the electrically insulating region to expose upper corners of the first and second floating gate electrodes. Another etching step is then performed. This etching step includes exposing upper surfaces and the exposed upper corners of the first and second floating gate electrodes to an etchant that rounds the exposed upper corners of the first and second floating gate electrodes. The step of etching back the electrically insulating region includes etching back the electrically insulating region to expose sidewalls of the first and second floating gate electrodes having heights ranging from about 30 Å to about 200 Å. The step of exposing the upper corners of the first and second floating gate electrodes to an etchant is followed by the step of etching back the electrically insulating region to expose entire sidewalls of the first and second floating gate electrodes.
摘要:
A method of manufacturing a semiconductor device includes forming an insulation pattern over a substrate. The insulation pattern has at least one opening that exposes a surface of the substrate. Then, a first polysilicon layer is formed over the substrates such that the first polysilicon layer fills the opening. The first polysilicon layer also includes a void therein. An upper portion of the first polysilicon layer is removed such that void expands to a recess and the recess is exposed. A second polysilicon layer is formed over the substrate such that the second polysilicon layer fills the recess.