Abstract:
A process for making an ethylene homopolymer in the presence of an oxide-supported chromium catalyst is disclosed. A small amount of an α-olefin contacted with the catalyst before polymerizing ethylene or introduced into an ethylene homopolymerization unexpectedly boosts process productivity. When used at part per million levels, the α-olefin improves productivity while maintaining desirable polymer properties. The invention is particularly valuable for making HDPE resins useful for blow molding applications.
Abstract:
A process for the copolymerization of ethylene and α-olefins which utilizes a mixed modifier comprised of a conjugated diene and alkoxysilane is disclosed.
Abstract:
A process for making an ethylene homopolymer in the presence of an oxide-supported chromium catalyst is disclosed. A small amount of an α-olefin contacted with the catalyst before polymerizing ethylene or introduced into an ethylene homopolymerization unexpectedly boosts process productivity. When used at part per million levels, the α-olefin improves productivity while maintaining desirable polymer properties. The invention is particularly valuable for making HDPE resins useful for blow molding applications.
Abstract:
A process to prepare a multimodal polyethylene with controlled LCB distribution is disclosed. In the first stage, ethylene is polymerized in the presence of a Ziegler catalyst that results in a homopolyethylene component having a higher LCB concentration. In the second stage, ethylene is copolymerized with a 1-olefin in the presence of the Ziegler catalyst and a lower concentration of hydrogen resulting in a copolymer component with a lower LCB concentration. The homopolyethylene component and the copolymer component are combined to form a novel multimodal polyethylene.
Abstract:
A process for preparing a polyethylene in a multi-stage process is described. The process comprises pre-treating a Ziegler catalyst in a first stage in the presence of a 1-olefin/ethylene mixture or a 1-olefin to produce a LLDPE or VLDPE, which have the characteristics of a polymer prepared with a single-site catalyst, e.g. high levels of short-chain branching that are uniformly distributed. The contents of the first stage are then transferred to a second stage where an ethylene or an ethylene/1-olefin mixture is polymerized in the presence of the pre-treated catalyst to form a polyethylene with good processability.
Abstract:
A catalyst useful in the polymerization of olefins, especially ethylene, is disclosed. The catalyst is obtained by admixing a zinc composition, a zirconium composition and a vanadium composition. The catalyst may be combined with a co-catalyst and, optionally, a modifier to yield an olefin polymerization system. The catalyst exhibits extremely high activity, good hydrogen response and produces polymers having broad molecular weight distribution ("MWD") and manifesting bimodal MWD profile.
Abstract:
Mixed catalyst compositions comprised of a first supported chromium-containing catalyst component and a second supported chromium-containing catalyst component and which additionally have one or more metallic or non-metallic catalytic agents associated therewith are provided. The additional metallic or non-metallic elements associated with the catalyst components can be aluminum, titanium, zirconium, boron, phosphorous or combinations thereof. The pore volume of the silica supports used for the first and second catalyst components differs by at least 0.3 cc/g. The mixed catalyst compositions of the invention are useful for the preparation of polyolefins. They are particularly useful of polymerization of ethylene in particle form polymerizations to produce high density polyethylene blow molding resins having good processability and physical properties. The improved particle form polymerization process and products obtained thereby using the above-described mixed catalyst compositions are also described.
Abstract:
A multi-reactor solution process for polymerizing ethylene is disclosed. Ethylene is polymerized in a first reaction zone in two parallel reactors and the polyethylene is transferred to a second reaction zone to continue or complete the polymerization. Ethylene is contacted with a mixture of a titanium halide and a vanadium halide in the first parallel reactor and with a magnesium-titanium based Ziegler-Natta catalyst at a lower temperature in the second parallel reactor. The process gives improved catalyst activity.
Abstract:
A process is provided for producing ethylene (co)polymer nanocomposites in a high pressure polymerization reactor. The process by which nanocomposites having organically modified clays incorporated and intimately dispersed therein involves polymerizing ethylene and one or more optional comonomers under high pressure polymerization conditions in the presence of an organic peroxide initiator and organically modified clay.
Abstract:
A process for preparing a polyethylene in a multi-stage process is described. The process comprises pre-treating a Ziegler catalyst in a first stage in the presence of a 1-olefin/ethylene mixture or a 1-olefin to produce a LLDPE or VLDPE, which have the characteristics of a polymer prepared with a single-site catalyst, e.g. high levels of short-chain branching that are uniformly distributed. The contents of the first stage are then transferred to a second stage where an ethylene or an ethylene/1-olefin mixture is polymerized in the presence of the pre-treated catalyst to form a polyethylene with good processability.