Abstract:
Methods of forming conductive elements on and in a substrate include forming a layer of conductive material over a surface of a substrate prior to forming a plurality of vias through the substrate from an opposing surface of the substrate to the layer of conductive material. In some embodiments, a temporary carrier may be secured to the layer of conductive material on a side thereof opposite the substrate prior to forming the vias. Structures, including workpieces formed using such methods, are also disclosed.
Abstract:
Methods of forming conductive elements on and in a substrate include forming a layer of conductive material over a surface of a substrate prior to forming a plurality of vias through the substrate from an opposing surface of the substrate to the layer of conductive material. In some embodiments, a temporary carrier may be secured to the layer of conductive material on a side thereof opposite the substrate prior to forming the vias. Structures, including workpieces formed using such methods, are also disclosed.
Abstract:
Microfeature workpieces having alloyed conductive structures, and associated methods are disclosed. A method in accordance with one embodiment includes applying a volume of material to a bond pad of a microfeature workpiece, with the volume of material including a first metallic constituent and the bond pad including a second constituent. The method can further include elevating a temperature of the volume of material while the volume of material is applied to the bond pad to alloy the first metallic constituent and the second metallic constituent so that the first metallic constituent is alloyed generally throughout the volume of material. A thickness of the bond pad can be reduced from an initial thickness T1 to a reduced thickness T2.
Abstract:
Microfeature workpieces having alloyed conductive structures, and associated methods are disclosed. A method in accordance with one embodiment includes applying a volume of material to a bond pad of a microfeature workpiece, with the volume of material including a first metallic constituent and the bond pad including a second constituent. The method can further include elevating a temperature of the volume of material while the volume of material is applied to the bond pad to alloy the first metallic constituent and the second metallic constituent so that the first metallic constituent is alloyed generally throughout the volume of material. A thickness of the bond pad can be reduced from an initial thickness T1 to a reduced thickness T2.