摘要:
Provided are a method for promoting insulin secretion, a method for suppressing the elevation of a blood glucose level, a method for ameliorating diabetes mellitus, a method for promoting growth of an animal, and a method for increasing an insulin level in breast milk. These methods comprising administering at least one member selected from the group consisting of a di- or a higher saccharide containing galactose, a derivative thereof, a saccharide containing N-acetylneuraminic acid, and a derivative thereof, to a patient in need thereof or an animal.
摘要:
The present invention provides a protein having β1,3-galactosyltransferase activity, a DNA encoding the protein, a transformant comprising the DNA, a process for producing the protein using the transformant, and a process for producing a galactose-containing complex carbohydrate using the transformant.
摘要:
The present invention provides a novel protein having N-acetylglucosamine 2-epimerase activity; a DNA encoding the protein; a recombinant vector containing the DNA; a transformant obtainable by introducing the recombinant vector into a host cell; and a process for producing the protein or N-acetylmannosamine using the transformant.
摘要:
Processes for producing GDP-fucose, comprising allowing GKDM and a culture broth of a microorganism capable of converting GKDM into GDP-fucose to be present in an aqueous medium, forming and accumulating GDP-fucose therein, and recovering the GDP-fucose therefrom; or comprising allowing a GTP precursor, a saccharide, a culture broth of a microorganism capable of forming GTP from a GTP precursor, and a culture broth of a microorganism capable of forming GKDM from a saccharide and GTP to be present in an aqueous medium, forming and accumulating GKDM therein, converting the accumulated GKDM into GDP-fucose using as a culture broth of a microorganism capable of converting GKDM into GDP-fucose to form and accumulate GDP-fucose therein, and recovering the GDP-fucose therefrom; and a process for producing GKDM, comprising allowing a GTP precursor, a saccharide, a culture broth of a microorganism capable of forming GTP from a GTP precursor, and a culture broth of a microorganism capable forming GKDM from a saccharide and GTP to be present in an aqueous medium, forming and accumulating GKDM therein, and recovering the GKDM therefrom.
摘要:
This invention relates to a process for producing a sugar nucleotide, in which a) a culture broth of a microorganism capable of producing NTP from a nucleotide precursor, or a treated product of the culture broth, and b) a culture broth of a microorganism capable of producing a sugar nucleotide from a sugar and NTP, or a treated product of the culture broth, are used as enzyme sources; a process for producing a complex carbohydrate, in which the above-described a) and b) and c) a culture broth of a microorganism, an animal cell or an insect cell capable of producing a complex carbohydrate from a sugar nucleotide and a complex carbohydrate precursor, or a treated product of the culture broth, are used as enzyme sources; a process for producing a complex carbohydrate, in which a culture broth of a microorganism, an animal cell or an insect cell capable of producing a complex carbohydrate from a sugar nucleotide and a complex carbohydrate precursor, or a treated product of the culture broth, is as an enzyme source; and a process for producing N-acetylglucosamine-1-phosphate, in which a culture broth of a microorganism having strong galactokinase activity, or a treated product of the culture broth, is used as the enzyme source.
摘要:
The present invention provides a protein having &bgr;1,4-galactosyltransferase activity, DNA encoding the protein, a recombinant DNA comprising the DNA, a transformant carrying the recombinant DNA, a process for producing &bgr;1,4-galactosyltransferase by using the transformant, and a process for producing a galactose-containing carbohydrate by using the transformant.
摘要:
The present invention provides a novel protein having mannose isomerase activity, DNA encoding the protein, a recombinant vector comprising the DNA, a transformant obtained by introducing the recombinant vector into a host cell, and processes for producing the above protein and mannose, fructose, xylulose and lyxose by using the transformant.
摘要:
The present invention provides a process for economically producing N-acetylneuraminic acid without using expensive materials such as pyruvic acid and phosphoenolpyruvic acid. The process comprises: allowing (i) a culture of a microorganism having N-acetylneuraminic acid aldolase activity or N-acetylneuraminic acid synthetase activity, or a treated matter of the culture, (ii) a culture of a microorganism capable of producing pyruvic acid or a treated matter of the culture, or a culture of a microorganism capable of producing phosphoenolpyruvic acid or a treated matter of the culture, (iii) N-acetylmannosamine, and (iv) an energy source which is necessary for the formation of pyruvic acid or phosphoenolpyruvic acid to be present in an aqueous medium to form and accumulate N-acetylneuraminic acid in the aqueous medium; and recovering N-acetylneuraminic acid from the aqueous medium.
摘要:
The present invention can provide a process for producing a protein having α1.4-galactosyltransferase activity using a transformant comprising a DNA encoding a protein having α1.4-galactosyltransferase activity derived from a microorganism belonging to the genus Pasteurella and a process for producing a galactose-containing complex carbohydrate using a transformant capable of producing a protein having α1.4-galactosyltransferase activity derived from a microorganism.
摘要:
The present invention can provide a process for producing a protein having α1.4-galactosyltransferase activity using a transformant comprising a DNA encoding a protein having α1.4-galactosyltransferase activity derived from a microorganism belonging to the genus Pasteurella and a process for producing a galactose-containing complex carbohydrate using a transformant capable of producing a protein having α1,4-galactosyltransferase activity derived from a microorganism.