摘要:
A noble metal-containing titanosilicate material, characterized in that said material is represented with the oxide form of xTiO2.100SiO2.yEOm.zE, wherein x ranges from 0.001 to 50.0; (y+z) ranges from 0.0001 to 20.0 and y/z
摘要:
A noble metal-containing titanosilicate material, characterized in that said material is represented with the oxide form of xTiO2.100SiO2.yEOm.zE, wherein x ranges from 0.001 to 50.0; (y+z) ranges from 0.0001 to 20.0 and y/z
摘要:
The present invention relates to a titanium-silicalite (TS-1) molecular sieve and the method for preparation of the same, wherein each crystallite of said titanium-silicalite molecular sieve has a hollow cavity with a radial length of 5-300 nm. The benzene adsorption capacity of the molecular sieve determined at 25° C. and P/P0=0.10 for 1 hour is at least 70 mg/g; and the method for preparation of said molecular sieve comprises an acid-treatment and then an organic-base treatment of the synthesized TS-1 molecular sieve, or only an organic-base treatment. The TS-1 molecular sieve of the present invention has a relatively high reactivity and activity stability in the catalytic oxidation.
摘要:
A process for producing ethylene from ethanol combining the catalytic conversion of hydrocarbons: an ethanol feedstock is contacted with a Y-zeolite containing catalyst to give a product stream, and a coked catalyst and an target product of ethylene are obtained after separating the reaction stream; a hydrocarbon feedstock is contacted with a Y-zeolite containing catalyst to give a product stream, a spent catalyst and an oil vapor are obtained after separating the reaction stream, and the oil vapor is further separated to give the products such as gas, gasoline and the like; a part or all of the coked catalyst and a part or all of the spent catalyst enter the regenerator for the coke-burning regeneration, and the regenerated catalyst is divided into two portions, wherein one portion returns to be contacted with the hydrocarbon feedstock, and the other portion, after cooling, returns to be contacted with ethanol feedstock. This process not only reasonably utilizes the excessive thermal energy of the hydrocarbon conversion, but also solves the problem of heat supply for the conversion of ethanol, thus ensuring the continuous catalytic conversion of ethanol and generating enormous economic benefits. For the catalytic conversion of the ethanol, the content of ethylene is 95 vol % or more in the gas product; and the conversion of ethylene is not less than 99%. For the catalytic conversion of the hydrocarbons, the yield for the light olefins increases slightly by at least 2 mol %.
摘要:
This invention relates to a composition with desulfurization property, in which the desulfurization component is a kind of molecular sieves with incorporation of vanadium into the skeleton. The composition has high hydrothermal stability and the vanadium is hard to lose.
摘要:
A process for producing ethylene from ethanol combining the catalytic conversion of hydrocarbons: an ethanol feedstock is contacted with a Y-zeolite containing catalyst to give a product stream, and a coked catalyst and an target product of ethylene are obtained after separating the reaction stream; a hydrocarbon feedstock is contacted with a Y-zeolite containing catalyst to give a product stream, a spent catalyst and an oil vapor are obtained after separating the reaction stream, and the oil vapor is further separated to give the products such as gas, gasoline and the like; a part or all of the coked catalyst and a part or all of the spent catalyst enter the regenerator for the coke-burning regeneration, and the regenerated catalyst is divided into two portions, wherein one portion returns to be contacted with the hydrocarbon feedstock, and the other portion, after cooling, returns to be contacted with ethanol feedstock. This process not only reasonably utilizes the excessive thermal energy of the hydrocarbon conversion, but also solves the problem of heat supply for the conversion of ethanol, thus ensuring the continuous catalytic conversion of ethanol and generating enormous economic benefits. For the catalytic conversion of the ethanol, the content of ethylene is 95 vol % or more in the gas product; and the conversion of ethylene is not less than 99%. For the catalytic conversion of the hydrocarbons, the yield for the light olefins increases slightly by at least 2 mol %.
摘要:
This invention relates to a composition with desulfurization property, in which the desulfurization component is a kind of molecular sieves with incorporation of vanadium into the skeleton. The composition has high hydrothermal stability and the vanadium is hard to lose.
摘要:
A process for combining the catalytic conversion of organic oxygenates and the catalytic conversion of hydrocarbons: an organic oxygenate feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, and a coked catalyst and a product stream are obtained after separating the reaction stream; a hydrocarbon feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, a spent catalyst and a reaction oil vapor are obtained after separating the reaction stream, and the reaction oil vapor is further separated to give the products such as gas, gasoline and the like; a part or all of the coked catalyst and a part or all of the spent catalyst enter the regenerator for the coke-burning regeneration, and the regenerated catalyst is divided into two portions, wherein one portion returns to be contacted with the hydrocarbon feedstock, and the other portion, after cooling, returns to be contacted with the organic oxygenate feedstock. This process not only reasonably utilizes the excessive thermal energy of the hydrocarbon conversion, but also solves the problem of heat supply for the conversion of the organic oxygenate, thus ensuring the continuous catalytic conversion of the organic oxygenate.
摘要:
A process for combining the catalytic conversion of organic oxygenates and the catalytic conversion of hydrocarbons: an organic oxygenate feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, and a coked catalyst and a product stream are obtained after separating the reaction stream; a hydrocarbon feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, a spent catalyst and a reaction oil vapor are obtained after separating the reaction stream, and the reaction oil vapor is further separated to give the products such as gas, gasoline and the like; a part or all of the coked catalyst and a part or all of the spent catalyst enter the regenerator for the coke-burning regeneration, and the regenerated catalyst is divided into two portions, wherein one portion returns to be contacted with the hydrocarbon feedstock, and the other portion, after cooling, returns to be contacted with the organic oxygenate feedstock. This process not only reasonably utilizes the excessive thermal energy of the hydrocarbon conversion, but also solves the problem of heat supply for the conversion of the organic oxygenate, thus ensuring the continuous catalytic conversion of the organic oxygenate.
摘要:
The invention discloses a catalyst and a method for cracking hydrocarbons. The catalyst comprises, calculated by dry basis, 10˜65 wt % ZSM-5 zeolite, 0˜60 wt % clay, 15˜60 wt % inorganic oxide binder, 0.5˜15 wt % one or more metal additives selected from the metals of Group VIIIB and 2˜25 wt % P additive, in which the metal additive is calculated by metal oxide and the P additive is calculated by P2O5. The method for cracking hydrocarbons using this catalyst increases the yield of FCC liquefied petroleum gas (LPG) and the octane number of FCC gasoline, as well as it increases the concentration of propylene in LPG dramatically.