Abstract:
A vertical split gate flash memory cell. The memory cell includes a substrate, a floating gate, a control gate, a tunnel layer, a first doping region, and a second doping region. The floating gate is disposed in the lower portion of the trench and insulated from the adjacent substrate by a floating gate oxide layer. The control gate is disposed over the floating gate and insulated from the adjacent substrate by a control gate oxide layer. The inter-gate dielectric layer is disposed between the floating gate and the control gate for insulation of the floating gate and the control gaze. The first doping region is formed in the substrate adjacent to the control gate and the second doping region is formed in the substrate below the first doping region and adjacent to the control gate to serve as source and drain regions with the first doping region.
Abstract:
A dynamic random access memory (DRAM) cell layout for arranging deep trenches and active areas and a fabrication method thereof. An active area comprises two vertical transistors, a common bitline contact and two deep trenches. The first vertical transistor is formed on a region where the first deep trench is partially overlapped with the first gate conductive line. The second vertical transistor is formed on a region where the second deep trench is partially overlapped with the second gate conductive line.
Abstract:
Method for preventing sneakage in shallow trench isolation and STI structure thereof. A semiconductor substrate having a pad layer and a trench formed thereon is provided, followed by the formation of a doped first lining layer on the sidewall of the trench. A second lining layer is then formed on the doped first lining layer. Etching is then performed to remove parts of the first lining layer and the second lining layer so that the height of the first lining layer is lower than the second lining layer. A sacrificial layer is then formed on the pad layer and filling the trench. Diffusion is then carried out so that the doped ions in the first lining layer out-diffuse to the substrate and form diffuse regions outside the two bottom corners of the trench.
Abstract:
Method for preventing sneakage in shallow trench isolation and STI structure thereof. A semiconductor substrate having a pad layer and a trench formed thereon is provided, followed by the formation of a doped first lining layer on the sidewall of the trench. A second lining layer is then formed on the doped first lining layer. Etching is then performed to remove parts of the first lining layer and the second lining layer so that the height of the first lining layer is lower than the second lining layer. A sacrificial layer is then formed on the pad layer and filling the trench. Diffusion is then carried out so that the doped ions in the first lining layer out-diffuse to the substrate and form diffuse regions outside the two bottom corners of the trench.
Abstract:
A novel trench-capacitor DRAM cell structure is disclosed. The trench-capacitor DRAM cell of this invention includes an active area island having a horizontal semiconductor surface and a vertical sidewall contiguous with the horizontal semiconductor surface. A pass transistor is disposed at the corner of the active area island. The pass transistor includes a folded gate conductor strip extending from the horizontal semiconductor surface to the vertical sidewall of the active area island, a source formed in the horizontal semiconductor surface, a drain formed in the vertical sidewall, and a gate oxide layer underneath the folded gate conductor strip. The source and drain define a folded channel. The trench-capacitor DRAM cell further includes a trench capacitor that is insulated from the folded gate conductor strip by a trench top oxide (TTO) layer and is coupled to the pass transistor via the drain.
Abstract:
Method for preventing sneakage in shallow trench isolation and STI structure thereof. A semiconductor substrate having a pad layer and a trench formed thereon is provided, followed by the formation of a doped first lining layer on the sidewall of the trench. A second lining layer is then formed on the doped first lining layer. Etching is then performed to remove parts of the first lining layer and the second lining layer so that the height of the first lining layer is lower than the second lining layer. A sacrificial layer is then formed on the pad layer and filling the trench. Diffusion is then carried out so that the doped ions in the first lining layer out-diffuse to the substrate and form diffuse regions outside the two bottom corners of the trench.
Abstract:
A novel trench-capacitor DRAM cell structure is disclosed. The trench-capacitor DRAM cell of this invention includes an active area island having a horizontal semiconductor surface and a vertical sidewall contiguous with the horizontal semiconductor surface. A pass transistor is disposed at the corner of the active area island. The pass transistor includes a folded gate conductor strip extending from the horizontal semiconductor surface to the vertical sidewall of the active area island, a source formed in the horizontal semiconductor surface, a drain formed in the vertical sidewall, and a gate oxide layer underneath the folded gate conductor strip. The source and drain define a folded channel. The trench-capacitor DRAM cell further includes a trench capacitor that is insulated from the folded gate conductor strip by a trench top oxide (TTO) layer and is coupled to the pass transistor via the drain.
Abstract:
A dynamic random access memory (DRAM) cell layout for arranging deep trenches and active areas and a fabrication method thereof. An active area comprises two vertical transistors, a common bitline contact and two deep trenches. The first vertical transistor is formed on a region where the first deep trench is partially overlapped with the first gate conductive line. The second vertical transistor is formed on a region where the second deep trench is partially overlapped with the second gate conductive line.
Abstract:
A vertical split gate flash memory cell. The memory cell includes a substrate, a floating gate, a control gate, a tunnel layer, a first doping region, and a second doping region. The floating gate is disposed in the lower portion of the trench and insulated from the adjacent substrate by a floating gate oxide layer. The control gate is disposed over the floating gate and insulated from the adjacent substrate by a control gate oxide layer. The inter-gate dielectric layer is disposed between the floating gate and the control gate for insulation of the floating gate and the control gate. The first doping region is formed in the substrate adjacent to the control gate and the second doping region is formed in the substrate below the first doping region and adjacent to the floating gate to serve as source and drain regions with the first doping region.
Abstract:
A memory cell with a vertical transistor and a trench capacitor. The memory cell includes a substrate having a trench and a trench capacitor disposed in the lower trench. A control gate, with a p-type polysilicon germanium layer and an overlying p-type polysilicon layer, is disposed in the upper trench and insulated from the substrate. A first insulating layer is disposed between the trench capacitor and the control gate. A first doped region is formed in the substrate around the first insulating layer and a second doped region is formed in the substrate around the second conductive layer.