摘要:
A distribution layer of silicon quantum dots are fabricated. After the layer is exposed to sun light for a while, the layer absorbs energy and produces pairs of electron and hole. By limiting the movement of the electrons and their moving directions through the structure obtained, the efficiency of an optoelectronic conversion is enhanced.
摘要:
A distribution layer of silicon quantum dots are fabricated. After the layer is exposed to sun light for a while, the layer absorbs energy and produces pairs of electron and hole. By limiting the movement of the electrons and their moving directions through the structure obtained, the efficiency of an optoelectronic conversion is enhanced.
摘要:
The present invention is a photosensitized electrode which absorbs sunlight to obtain electron-hole pair. The photosensitized electrode is fabricated with simple procedure and has low cost. The electrode has excellent chemical resist to be applied in a solar cell device with enhanced sun-light absorbing ability. The present invention can be applied in an optoelectronic device or a hydrogen generator device too.
摘要:
The present invention is a photosensitized electrode which absorbs sunlight to obtain electron-hole pair. The photosensitized electrode is fabricated with simple procedure and has low cost. The electrode has excellent chemical resist to be applied in a solar cell device with enhanced sun-light absorbing ability. The present invention can be applied in an optoelectronic device or a hydrogen generator device too.
摘要:
The present invention is a photosensitized electrode which absorbs sun light to obtain pairs of separated electron and hole. The photosensitized electrode is fabricated with simple procedure and has low cost. The electrode has excellent chemical resistance and is fitted to be applied in a solar cell device with enhanced sun-light absorbing ability. The present invention can be applied in an optoelectronic device or a hydrogen generator device too.
摘要:
The present invention is a photosensitized electrode which absorbs sun light to obtain pairs of separated electron and hole. The photosensitized electrode is fabricated with simple procedure and has low cost. The electrode has excellent chemical resistance and is fitted to be applied in a solar cell device with enhanced sun-light absorbing ability. The present invention can be applied in an optoelectronic device or a hydrogen generator device too.
摘要:
A method is disclosed for making a titanium-based compound film of a poly-silicon solar cell. In the method, a ceramic substrate is made of aluminum oxide. The ceramic substrate is coated with a titanium film in an e-gun evaporation system. Dichlorosilane is provided on the titanium film by atmospheric pressure chemical vapor deposition. A titanium-based compound film is formed on the ceramic substrate.
摘要:
A solar cell is prepared. The solar cell is photo-sensitized. The solar cell has a semiconductor layer. And carbon nanotubes are deposited on the semiconductor layer with an arrangement. The solar cell is prepared with a reduced amount of fabrication material, a lowered fabrication cost and a prolonged lifetime.
摘要:
A method for making a tandem solar cell includes the steps of providing a ceramic substrate, providing a titanium-based layer on the ceramic substrate, providing an n+-p−-p+ laminate on the titanium-based layer, passivating the n+-p−-p+ laminate, providing an n-i-p laminate on the n+-p−-p+ laminate, providing a p-type ohmic contact, providing an n-type ohmic contact providing an anti-reflection layer of SiCN/SiO2 on the n-i-p laminate.
摘要:
A method is disclosed to make a multi-crystalline silicon film of a solar cell. The method includes the step of providing a ceramic substrate, the step of providing a titanium-based film on the ceramic substrate, the step of providing a p+-type back surface field layer on the titanium-based film, the step of providing a p−-type light-soaking layer on the p+-type back surface field layer and the step of conducting n+-type diffusive deposition of phosphine on the p−-type light-soaking layer based on atmospheric pressure chemical vapor deposition, thus forming an n+-type emitter on the p−-type light-soaking layer.