Abstract:
An array of buoys is disclosed for obtaining energy from a wave in a body of water. The array of buoys can include a framework having a plurality of vertical members and a base buoy coupled to the framework to support the framework in a body of water and maintain the vertical members in a vertical orientation. The array of buoys can further include a plurality of movable buoys. Each of the plurality of movable buoys can be movably disposed about a different one of the plurality of vertical members and configured to move relative to the respective vertical members and the base buoy in response to a wave in the body of water. Additionally, the array of buoys can include an energy conversion device operable with each of the plurality of movable buoys to generate power from movement of the movable buoys relative to the vertical members.
Abstract:
An energy conversion device is disclosed. The energy conversion device can include a magnetic field producing element, and a coil having a coil axis. The magnetic field producing element and the coil can be movable relative to one another in a movement plane. The coil axis can be substantially perpendicular to the movement plane.
Abstract:
A system for obtaining energy from surface waves is disclosed. The system can include an array of buoys. The array of buoys can include a framework having a plurality of vertical members. The array of buoys can also include a base buoy coupled to the framework to support the framework in a body of water and maintain the vertical members in a vertical orientation. The array of buoys can further include a plurality of movable buoys. Each of the plurality of movable buoys can be movably disposed about a different one of the vertical members and configured to move relative to the respective vertical members and the base buoy in response to a wave in the body of water. Additionally, the array of buoys can include an energy conversion device operable with each of the plurality of movable buoys to generate power from movement of the movable buoys relative to the vertical members.
Abstract:
An underwater utility line, and associated systems and methods are disclosed. The underwater utility line can include an adjustably buoyant tube. The underwater utility line can also include a transmission line to transfer energy disposed in an interior of the adjustably buoyant tube. The underwater utility line can further include a gas source and a controller to control the gas provided by the gas source to alter the buoyancy of the adjustably buoyant tube.
Abstract:
A system for obtaining energy from surface waves is disclosed. The system can include an array of buoys. The array of buoys can include a framework having a plurality of vertical members. The array of buoys can also include a base buoy coupled to the framework to support the framework in a body of water and maintain the vertical members in a vertical orientation. The array of buoys can further include a plurality of movable buoys. Each of the plurality of movable buoys can be movably disposed about a different one of the vertical members and configured to move relative to the respective vertical members and the base buoy in response to a wave in the body of water. Additionally, the array of buoys can include an energy conversion device operable with each of the plurality of movable buoys to generate power from movement of the movable buoys relative to the vertical members. In addition, the system can include a buoyant tether coupled to the array of buoys to secure the array of buoys to an object.
Abstract:
A system for obtaining energy from surface waves is disclosed. The system can include an array of buoys. The array of buoys can include a framework having a plurality of vertical members. The array of buoys can also include a base buoy coupled to the framework to support the framework in a body of water and maintain the vertical members in a vertical orientation. The array of buoys can further include a plurality of movable buoys. Each of the plurality of movable buoys can be movably disposed about a different one of the vertical members and configured to move relative to the respective vertical members and the base buoy in response to a wave in the body of water. Additionally, the array of buoys can include an energy conversion device operable with each of the plurality of movable buoys to generate power from movement of the movable buoys relative to the vertical members. In addition, the system can include a buoyant tether coupled to the array of buoys to secure the array of buoys to an object.
Abstract:
A system for obtaining energy from surface waves is disclosed. The system can include an array of buoys. The array of buoys can include a framework having a plurality of vertical members. The array of buoys can also include a base buoy coupled to the framework to support the framework in a body of water and maintain the vertical members in a vertical orientation. The array of buoys can further include a plurality of movable buoys. Each of the plurality of movable buoys can be movably disposed about a different one of the vertical members and configured to move relative to the respective vertical members and the base buoy in response to a wave in the body of water. Additionally, the array of buoys can include an energy conversion device operable with each of the plurality of movable buoys to generate power from movement of the movable buoys relative to the vertical members.
Abstract:
An underwater utility line, and associated systems and methods are disclosed. The underwater utility line can include an adjustably buoyant tube. The underwater utility line can also include a transmission line to transfer energy disposed in an interior of the adjustably buoyant tube. The underwater utility line can further include a gas source and a controller to control the gas provided by the gas source to alter the buoyancy of the adjustably buoyant tube.
Abstract:
A buoy for obtaining energy from a wave in a body of water, and associated methods are disclosed. The buoy can include a floatation portion to provide buoyancy for the buoy in water. The buoy can also include a ballast portion operable with the floatation portion to move in a pendulum motion in response to a wave in the body of water. The floatation portion can be substantially maintained above the ballast portion. In addition, the buoy can include an energy conversion device to generate power in response to the pendulum motion of the ballast portion.
Abstract:
An array of buoys is disclosed for obtaining energy from a wave in a body of water. The array of buoys can include a framework having a plurality of vertical members and a base buoy coupled to the framework to support the framework in a body of water and maintain the vertical members in a vertical orientation. The array of buoys can further include a plurality of movable buoys. Each of the plurality of movable buoys can be movably disposed about a different one of the plurality of vertical members and configured to move relative to the respective vertical members and the base buoy in response to a wave in the body of water. Additionally, the array of buoys can include an energy conversion device operable with each of the plurality of movable buoys to generate power from movement of the movable buoys relative to the vertical members.