Abstract:
A semiconductor device comprises: a semiconductor chip; a first frame; a solder layer which bonds the solder bonding metal layer of the semiconductor chip and the first frame; and a second frame bonded to the rear face of the semiconductor chip. The semiconductor chip includes: a semiconductor substrate; a first metal layer provided on a major surface of the semiconductor substrate and forming a Schottky junction with the semiconductor substrate; a second metal layer provided on the first metal layer and primarily composed of aluminum; a third metal layer provided on the second metal layer and primarily composed of molybdenum or titanium; and a solder bonding metal layer provided on the third metal layer and including at least a forth metal layer which is primarily composed of nickel, ion or cobalt.
Abstract:
The present invention relates to a method of manufacturing a semiconductor device including (1) forming a laminated structure on a major surface of a semiconductor substrate, the laminated structure comprising at least a first metal layer that forms a Schottky junction with the semiconductor substrate, a second metal layer primarily composed of aluminum, and a third metal layer primarily composed of molybdenum or titanium, (2) patterning the laminated structure into a predetermined configuration, (3) forming a solder bonding metal layer comprising at least nickel, ion or cobalt on the major surface of the semiconductor substrate having the patterned laminated structure formed thereon, (4) patterning the solder bonding metal layer into a pattern configuration identical to that of the laminated structure, (5) cutting the semiconductor substrate on which the laminated structure and the solder bonding metal layer are patterned to form a plurality of semiconductor chips, and (6) bonding the semiconductor chip to a first frame using at least one solder layer formed on the solder bonding metal layer on the major surface of the semiconductor substrate, and bonding a rear face of the semiconductor chip to a second frame.
Abstract:
An optical information recording and reproducing apparatus is provided for recording and/or reproducing information on an optical disc including a recording layer in which information can be recorded at recording positions each located at a different distance from a surface of the optical disc. The optical information recording and reproducing apparatus includes: a light source; and an objective lens which can converge the light flux from the light source onto one of the recording positions at a predetermined depth in the recording layer for recording information on the optical disc. When information to be recorded is recorded on one of the recording positions at a predetermined depth in the recording layer, the optical information recording and reproducing apparatus records information about the predetermined depth on one of the plurality of recording positions at the predetermined depth, with the information to be recorded.
Abstract:
To provide a process for producing a glass member provided with a sealing material layer, capable of favorably forming a sealing material layer even in a case where the entire glass substrate cannot be heated.A sealing material paste prepared by mixing a sealing material containing a sealing glass and a laser absorbent with an organic binder is applied to a sealing region of a glass substrate 2 in the form of a frame. The frame-form coating layer 8 of the sealing material paste is selectively heated by irradiation with a laser light 9 along the coating layer 8 to fire the sealing material while the organic binder in the coating layer 8 is burnt out to form a sealing material layer 7. Using such a sealing material layer 7, a space between two glass substrates is sealed.
Abstract:
Embodiments of the present disclosure are directed to a package having pressure sensor including a first substrate having a fixed electrode bonded to a second substrate having a movable electrode disposed at a predetermined interval from the fixed electrode, a support substrate with an opening for storing the second substrate, and a resin layer for fixing the pressure sensor and the support substrate. The pressure sensor may be packaged on the support substrate via the first substrate and a bonding member in a state where the second substrate is fit within the opening. The package for the pressure sensor may be sufficiently thin to be employed for the use on a minimum area.