摘要:
Method for applying a corrosion-protection layer to the base body (1) of a gas turbine blade by embedding particles (3) of SiC in a metallic matrix by means of powder, paste or electrolytic/electrophoretic methods and compacting, welding or fusing and bonding the matrix-forming material to the base body (1) by means of hot-pressing, hot isostatic pressing or laser beam, electron beam or electric arc. Protective layers are formed which do not flake off and with high silicon content which is at least partially contained in the embedded, partly modified SiC particles (6) as a reservoir for the operation.
摘要:
A cobalt-base superalloy chemical composition is disclosed which includes, in % by weight: 25-28 W; 3-8 Al; 0.5-6 Ta; 0-3 Mo; 0.01-0.2 C; 0.01-0.1 Hf; 0.001 -0.05 B; 0.01-0.1 Si; and remainder Co and unavoidable impurities. This superalloy can be strengthened by γ′ dispersions and further dispersion mechanisms. Exemplary compositions can provide good oxidation properties and improved strength values at high temperatures.
摘要:
In a process for producing a large single-crystal component or directionally solidified component made of a nickel-based superalloy, the component is first cast into shape in a known manner to form a microstructure comprising dendrites, and then solution annealing for homogenizing the cast microstructure of the component and two-stage precipitation heat treatment are carried out. In order to avoid chemical inhomogeneities and internal stresses caused thereby, a HIP process with a pressure of higher than 160 MPa is carried out following the solution annealing.
摘要:
A steel has the following chemical composition (amounts in % by weight): 0.05-0.14 C, 8-13 Cr, 1-2.6 Ni, 0.5-1.9 Mo, 0.5-1.5 Mn, 0.15-0.5 Si, 0.2-0.4 V, 0-0.04 B, 2.1-4.0 Re, 0-0.07 Ta, 0-60 ppm Pd, remainder Fe and unavoidable impurities. The steel can be used effectively as a welding additive material and has outstanding properties at very high temperatures, in particular a good creep rupture strength/resistance and a good oxidation resistance.
摘要:
Protective tubes for thermocouples exposed to oxidizing atmospheres at temperatures in the region of approximately 1100° C. are produced from a single-crystal nickel-based superalloy, preferably from an alloy having the following chemical composition (in % by weight): 7.7-8.3 Cr, 5.0-5.25 Co, 2.0-2.1 Mo, 7.8-8.3 W, 5.8-6.1 Ta, 4.9-5.1 Al, 1.3-1.4 Ti, 0.11-0.15 Si, 0.11-0.15 Hf, 200-750 ppm C, 50-400 ppm B, remainder nickel and unavoidable impurities. Protective tubes of this type exhibit good strength and good oxidation resistance under severe stress conditions.
摘要:
A component such as a turbine blade (1) of a gas turbine is provided with an intermetallic felt (2). By providing the tip (11) of the turbine blade (1) with the intermetallic felt (2) and optionally a coating of a ceramic material (3), improved protection against thermal and mechanical effects and improved oxidation resistance can be achieved. Also conceivable would be an arrangement of the intermetallic felt (2) at the rotor (4, 4a) or stator (4, 4b) opposite from the turbine blade (1) or on the platform (12) of the turbine blade (1).
摘要:
Current-transmitting components for conducting current between adjacent, planar, stacked high-temperature fuel cells containing solid electrolyte (1) comprising a carrier (7; 10) which determines the geometrical shape and is composed of an oxide-dispersion-hardened nickel or nickel/chromium alloy containing up to 2% by weight of ThO.sub.2 as dispersoid, an electrically conductive Cr.sub.2 O.sub.3 layer (8) and a noble-metal surface layer (9; 12) supported on the latter at the contact/touching faces. Variants having continuous (13; 14) or porous (9; 12) noble-metal surface layer composed of Au, a Pt metal or alloys. Separating plate (4) composed of an oxide-dispersion-hardened nickel/chromium alloy with nickel plating (5) on the fuel side and noble-metal plating (6) on the oxygen side.
摘要:
A cobalt-base superalloy chemical composition is disclosed which includes, in % by weight: 25-28 W; 3-8 Al; 0.5-6 Ta; 0-3 Mo; 0.01-0.2 C; 0.01-0.1 Hf; 0.001-0.05 B; 0.01-0.1 Si; and remainder Co and unavoidable impurities. This superalloy can be strengthened by γ′ dispersions and further dispersion mechanisms. Exemplary compositions can provide good oxidation properties and improved strength values at high temperatures.
摘要:
A creep-resistant steel is characterized by the following chemical composition (values in % by weight): 9.0 to 12.0 Cr, 0.1 to 0.5 Mn, 2.3 to 3 Ni, 1.5 to 2.0 Mo, 0.1 to 0.4 V, 0.01 to 0.06 Nb, 0.08 to 0.16 C, 0.02 to 0.08 N, 0.004 to 0.012 B, 0.001 to 2 Ta, 0.001 to 0.5 La, 0.0001 to 1 Pd, maximum 0.005 P, maximum 0.005 S, maximum 0.05 Si, maximum 0.005 Sn, the remainder iron and unavoidable impurities. This steel is distinguished, as compared with commercial steels, by a greatly improved creep behavior at temperatures of 550° C. and above. Moreover, it has an improved resistance to embrittlement during long-term aging and comparatively high toughness. The steel is advantageously used as a material for gas turbine rotors which are exposed to high inlet temperatures in order to increase the efficiency of the gas turbine, but is also used for steam turbines.
摘要:
A nickel-base superalloy is characterized by the following chemical composition (details in % by weight): 7.7-8.3 Cr, 5.0-5.25 Co, 2.0-2.1 Mo, 7.8-8.3 W, 5.8-6.1 Ta, 4.9-5.1 Al, 1.3-1.4 Ti, 0.11-0.15 Si, 0.11-0.15 Hf, 200-750 ppm C, 50-400 ppm B, 0.1-5 ppm S, 5-100 ppm Y and/or 5-100 ppm La, remainder Ni and production-related impurities. The alloy is distinguished by very good casting properties, a high resistance to oxidation, and good compatibility with TBC layers applied to its surface.