摘要:
A duplex stainless steel welded joint is provided that can suppress undercuts and is excellent in fatigue characteristics. The duplex stainless steel welded joint includes a base metal, and a weld metal consisting of, in mass %, C: 0.001% to 0.030%, Si: 0.05% to 0.70%, Mn: 0.05% to 0.85%, P: 0.030% or less, S: 0.0030% or less, Cr: 21.00% to 28.00%, Ni: 5.00% to 11.00%, Mo: 2.00% to 4.50%, Cu: 0.01 to 4.00%, sol. Al: 0.0010 to 0.0500%, N: 0.080% to 0.400%, and B: 0.0001 to 0.0100%, with the balance being Fe and impurities, and satisfies the content of each element in the base metal and the weld metal, and also satisfies Formula (1) and Formula (2).
摘要:
An iron-based welding and forging alloy with a complex chemistry produces a dense, homogenous weld deposit that is resistant to hardness loss at elevated temperatures with less reliance on cobalt content. Such an alloy may comprise, in approximate percentages by weight: cobalt: 5-25; chromium: 7-14; tungsten: 2.5-10; molybdenum: 2-9; nickel: 1-6; carbon: 0.01-5; manganese: 0.01-3; with iron and residual elements comprising the balance. The residual elements may include one or more of the following: silicon, vanadium, phosphorus, and sulfur. The amounts of the residual elements may be up to 1% by weight. The inventive alloys may be provided in any suitable form for welding purposes, including metal-core TIG (GTAW), coated electrode (SMAW) and metal-core-wire (MCAW). The inventive alloy combinations may be fabricated as welding filler, providing resistance to high temperature softening, facilitating use in applications that previously dictated a specific cobalt-based material.
摘要:
Steel weld metal compositions can include from 9.00 to 12.00 wt % chromium, from 0.02 to 0.06 wt % carbon, from 0.3 to 0.7 wt % manganese, from 0.1 to 0.3 wt % silicon, from 0.5 to 1.2 wt % nickel, from 0.1 to 0.5 wt % molybdenum, from 1.0 to 1.5 wt % cobalt, from 0.03 to 0.08 wt % niobium, from 0.2 to 0.8 wt % tungsten, from 0.3 to 0.8 wt % copper, from 0.005 to 0.010 wt % boron, and from 0.005 to 0.025 wt % nitrogen; wherein the balance of the steel weld metal composition is iron and unavoidable impurities. Methods of depositing the steel weld metal compositions on a workpiece by an electric arc welding process are also described without the use of a post weld heat treatment. Consumable electric arc welding electrodes producing high chromium creep resistant steel weld metal compositions are also described.
摘要:
A method for joining a first metal part with a second metal part, the metal parts having a solidus temperature above 1100° C., includes applying a melting depressant composition on a surface of the first metal part, the melting depressant composition including a melting depressant component that includes at least 25 wt % boron and silicon for decreasing a melting temperature of the first metal part; bringing the second metal part into contact with the melting depressant composition at a contact point on said surface; heating the first and second metal parts to a temperature above 1100° C.; and allowing a melted metal layer of the first metal component to solidify, such that a joint is obtained at the contact point. The boron at least partly originates from a boron compound selected from any of the following compounds: boric acid, borax, titanium diboride and boron nitride. The melting depressant composition and related products are also described.
摘要:
Weld metals and methods for welding ferritic steels are provided. The weld metals have high strength and high ductile tearing resistance and are suitable for use in strain based pipelines. The weld metals are comprised of between 0.03 and 0.08 wt % carbon, between 2.0 and 3.5 wt % nickel, not greater than about 2.0 wt % manganese, not greater than about 0.80 wt % molybdenum, not greater than about 0.70 wt % silicon, not greater than about 0.03 wt % aluminum, not greater than 0.02 wt % titanium, not greater than 0.04 wt % zirconium, between 100 and 225 ppm oxygen, not greater than about 100 ppm nitrogen, not greater than about 100 ppm sulfur, not greater than about 100 ppm phosphorus, and the balance essentially iron. The weld metals are applied using a power source with pulsed current waveform control with
摘要:
Systems and methods for low-manganese welding alloys are disclosed. An example arc welding consumable that forms a weld deposit on a steel workpiece during an arc welding operation, wherein the welding consumable comprises: less than 0.4 wt % manganese; strengthening agents selected from the group consisting of nickel, cobalt, copper, carbon, molybdenum, chromium, vanadium, silicon, and boron; and grain control agents selected from the group consisting of niobium, tantalum, titanium, zirconium, and boron, wherein the grain control agents comprise greater than 0.06 wt % and less than 0.6 wt % of the welding consumable, wherein the weld deposit comprises a tensile strength greater than or equal to 70 ksi, a yield strength greater than or equal to 58 ksi, a ductility, as measured by percent elongation, that is at least 22%, and a Charpy V-notch toughness greater than or equal to 20 ft-lbs at −20° F., and wherein the welding consumable provides a manganese fume generation rate less than 0.01 grams per minute during the arc welding operation.
摘要:
An article and a method for making shaped cooling holes in an article are provided. The method includes the steps of providing a metal alloy powder; forming an initial layer with the metal alloy powder, the initial layer having a preselected thickness and a preselected shape, the preselected shape including at least one aperture; sequentially forming an additional layer over the initial layer with the metal alloy powder, the additional layer having a second preselected thickness and a second preselected shape, the second preselected shape including at least one aperture corresponding to the at least one aperture in the initial layer; and joining the additional layer to the initial layer, forming a structure having a predetermined thickness, a predetermined shape, and at least one aperture having a predetermined profile. The structure is attached to a substrate to make the article.
摘要:
This hermetic sealing lid member (1) is made of a clad material (10) including a base material layer (11) made of an Fe alloy that contains 4 mass % or more of Cr and a silver brazing layer (13) bonded onto a surface of the base material layer on a side closer to an electronic component housing member through an intermediate layer (12).
摘要:
The present disclosure relates to an alloy, for hardbanding and/or hard overlay applications, which is abrasion resistant to the order of siliceous earth particles and weldable in crack free state on industrial products. The alloy is a carbon chrome based alloy comprising titanium and vanadium carbides and thus has an extremely low coefficient of friction, high abrasion resistance as welded without working. In tool joints and stabilizers, the alloy achieves an optimum balance between tool joint and stabilizer wear resistance and induced casing wear. The alloy is also self-shielded and therefore does not require external shielding gas.
摘要:
A wire-like spray material (4) based on an iron for electric arc wire spraying and also a functional layer (2) which can be produced therewith on a substrate (1). The functional layer (2) has good corrosion resistance towards diesel fuel having a high sulphur content.