Abstract:
Disclosed is a charged particle beam device, wherein multibeam secondary electron detectors (121a, 121b, 121c) and a single beam detector (140; 640) are provided, and under the control of a system control unit (135), an optical system control circuit (139) controls a lens and a beam selecting diaphragm (141) and switches the electrooptical conditions between those for multibeam mode and those for single beam mode, thereby one charged particle beam device can be operated as a multibeam charged particle device and a single beam charged particle device by switching. Thus, observation conditions are flexibly changed in accordance with an object to be observed, and a sample can be observed with a high accuracy and high efficiency.
Abstract:
Disclosed is a charged particle beam device, wherein multibeam secondary electron detectors (121a, 121b, 121c) and a single beam detector (140; 640) are provided, and under the control of a system control unit (135), an optical system control circuit (139) controls a lens and a beam selecting diaphragm (141) and switches the electrooptical conditions between those for multibeam mode and those for single beam mode, thereby one charged particle beam device can be operated as a multibeam charged particle device and a single beam charged particle device by switching. Thus, observation conditions are flexibly changed in accordance with an object to be observed, and a sample can be observed with a high accuracy and high efficiency.
Abstract:
Provided is a charged particle beam applied apparatus for observing a sample, provided with: a beam-forming section that forms a plurality of charged particle beams on a sample; an energy control unit that controls the incident energy of the plurality of charged particle beams that are irradiated onto the sample; a beam current control unit that controls the beam current of the plurality of charged particle beams that are irradiated onto the sample; and a beam arrangement control unit that controls the arrangement in which the plurality of charged particle beams is irradiated onto the sample. The beam-forming section includes a beam splitting electrode, a lens array upper electrode, a lens array middle electrode, a lens array lower electrode and a movable stage, and functions as the beam current control unit or the beam arrangement control unit through selection, by the movable stage, of a plurality of aperture pattern sets.
Abstract:
Provided is a charged particle beam applied apparatus for observing a sample, provided with: a beam-forming section that forms a plurality of charged particle beams on a sample; an energy control unit that controls the incident energy of the plurality of charged particle beams that are irradiated onto the sample; a beam current control unit that controls the beam current of the plurality of charged particle beams that are irradiated onto the sample; and a beam arrangement control unit that controls the arrangement in which the plurality of charged particle beams is irradiated onto the sample. The beam-forming section includes a beam splitting electrode, a lens array upper electrode, a lens array middle electrode, a lens array lower electrode and a movable stage, and functions as the beam current control unit or the beam arrangement control unit through selection, by the movable stage, of a plurality of aperture pattern sets.
Abstract:
A circuit pattern inspecting instrument includes an electron-optical system for irradiating an electron beam on a sample, an electron beam deflector, a detector for detecting secondary charged particles from the sample, and a mode setting unit for switching between a first mode and a second mode. An electron beam current is larger in the first mode than in the second mode, and an electron beam scanning speed is higher in the first mode than in the second mode. The circuit pattern inspecting instrument is configured so that first the sample is observed in the first mode, then a particular position on the sample is selected based on image data produced by an output of the detector in the first mode, and then the particular position on the sample is observed in the second mode.
Abstract:
A circuit pattern inspecting instrument includes an electron-optical system for irradiating an electron beam on a sample, an electron beam deflector, a detector for detecting secondary charged particles from the sample, and a mode setting unit for switching between a first mode and a second mode. An electron beam current is larger in the first mode than in the second mode, and an electron beam scanning speed is higher in the first mode than in the second mode. The circuit pattern inspecting instrument is configured so that first the sample is observed in the first mode, then a particular position on the sample is selected based on image data produced by an output of the detector in the first mode, and then the particular position on the sample is observed in the second mode.
Abstract:
An apparatus for inspecting a sample using a scanning electron microscope includes a sample stage, a first electron-optical system to scan an electron beam of a first beam current on the sample, a second electron-optical system to scan an electron beam of a second beam current smaller than the first beam current on the sample, a mechanism to move the sample stage, a detector provided in each of the first and second electron-optical systems to detect a secondary electron. The first electron-optical system is operable in a first mode and the second electron-optical system is operable in a second mode with higher resolution than that of the first mode. In the first mode, the sample is observed while the sample stage is moved continuously, and in the second mode, the sample is observed by detecting a secondary electron using the detector while the sample stage is held stationary.
Abstract:
An inspection method and an inspection apparatus using an electron beam enabling more detailed and quantitative evaluation at a high throughput level. The method comprises the steps of irradiating, based on previously prepared information concerning a defect position on the surface of a sample, the defect and its vicinity with an electron beam a plurality of times at predetermined intervals; detecting an electron signal secondarily generated from the sample surface by the electron beam; imaging an electron signal detected by the previously specified n-th or later electron beam irradiation; and measuring the resistance or a leakage amount of the defective portion of the sample surface in accordance with the degree of charge relaxation by monitoring the charge relaxation state of the sample surface based on the electron beam image information.
Abstract:
An inspection method and an inspection apparatus using an electron beam enabling more detailed and quantitative evaluation at a high throughput level. The method comprises the steps of irradiating, based on previously prepared information concerning a defect position on the surface of a sample, the defect and its vicinity with an electron beam a plurality of times at predetermined intervals; detecting an electron signal secondarily generated from the sample surface by the electron beam; imaging an electron signal detected by the previously specified n-th or later electron beam irradiation; and measuring the resistance or a leakage amount of the defective portion of the sample surface in accordance with the degree of charge relaxation by monitoring the charge relaxation state of the sample surface based on the electron beam image information.
Abstract:
An inspection apparatus and method are provided capable of suppressing electron beam focus drifts and irradiation-position deviations caused by sample surface charge-up by irradiation of an electron beam during micropattern inspection to thereby avoid false defect detection and also shorten an inspection time. The apparatus captures a plurality of images of alignment marks provided at dies, stores in a storage device deviations between the central coordinates of alignment mark images and the coordinates of the marks as a coordinate correction value, measures heights at a plurality of coordinates on the sample surface, captures images of the measured coordinates to perform focus adjustment, saves the relationship between such adjusted values and the sensor-measured heights in the storage as height correction values, and uses inspection conditions including the image coordinate correction values saved in the storage and the height correction values to correct the image coordinates and height of the sample.