摘要:
A method for an ion implantation is provided. First, a non-parallel ion beam is provided. Thereafter, a relative motion between a workpiece and the non-parallel ion beam, so as to enable each region of the workpiece to be implanted by different portions of the non-parallel ion beam successively. Particularly, when at least one three-dimensional structure is located on the upper surface of the workpiece, both the top surface and the side surface of the three-dimensional structure may be implanted properly by the non-parallel ion beam when the workpiece is moved across the non-parallel ion beam one and only one times. Herein, the non-parallel ion beam can be a divergent ion beam or a convergent ion beam (both may be viewed as the integrated divergent beam), also can be generated directly from an ion source or is modified from a parallel ion beam, a divergent ion beam or a convergent ion beam.
摘要:
The ion implanter includes a deflecting electrode and a shield member. The ion beam has a ribbon shape. The deflecting electrode deflects at least a part of the ion beam in a long side direction toward a short side direction of the ion beam, based on a result measured of a beam current density distribution in the long side direction. The shield member partially shields the ion beam deflected by the deflecting electrode. The deflecting electrode includes a plate electrode and an electrode group including plural electrodes. The electrode group is disposed to face the plate electrode to interpose the ion beam between the plate electrode and the electrode group. The plate electrode is electrically grounded, and the plurality of electrodes are electrically independent from each other. Each of the plurality of electrodes is connected to an independent power source from other power sources to perform a potential setting.
摘要:
An ion source is disclosed incorporating various aspects of the invention including i) a vaporizer, ii) a vaporizer valve, iii) a gas feed, iv) an ionization chamber, v) an electron gun, vi) a cooled mounting frame, and vii) an ion exit aperture. The ion source includes means for introducing gaseous feed material into the ionization chamber, means for vaporizing solid feed materials and introducing their vapors into the ionization chamber, means for ionizing the introduced gaseous feed materials within the ionization chamber, and means for extracting the ions thus produced from an ion exit aperture adjacent to the ionization region. In addition, means for accelerating and focusing the exiting ions are provided. The vaporizer, vaporizer valve, gas feed, ionization chamber, electron gun, cooled mounting frame, and ion exit aperture are all integrated into a single assembly in preferred embodiments of the novel ion source.
摘要:
A direct electron impact ion source is disclosed that includes a vaporizer for producing a process gas; an electron source for generating an electron beam; and an ionization chamber. The electron source is located outside the ionization chamber. Aligned apertures are provided in opposing walls of the ionization chamber to allow an electron beam to pass through the ionization chamber. The process gas is directed into the ionization chamber and ionized and extracted from the ionization chamber by way of an extraction aperture. In one embodiment, the direct electron impact ion source is configured with a form factor to enable it to be retrofit into the volume of an existing ion source , for example, an arc discharge type ion source. Alternatively, the direct electron impact ion source may be used together with an arc discharge ion source to create a dual mode or universal ion source.
摘要:
An ion source and a polishing system using the ion source are disclosed. The ion source includes a discharge chamber, an electron emitter, a cathode, a screen grid, an accelerator grid, and a screen electrode. The discharge chamber is configured for accommodating discharge gas. The electron emitter is disposed in the discharge chamber. The cathode, the screen grid, the accelerator grid, and the accelerator grid are separately aligned in the discharge chamber in an ascending order with respect to the respective distance thereof from the electron emitter. The electron emitter, the cathode, the screen grid, the accelerator grid, and the accelerator grid are powered in order of descending voltages. The screen electrode defines an adjustable orifice to permit adjustment of an ion-beam ejecting area associated with the orifice. The polishing system further employs a movable stage and control and monitor components, in addition to the ion source.
摘要:
An ion source for an ion implantation system includes a vaporizer for producing a process gas; an electron source for generating an electron beam to ionize the process gas within a ionization chamber. The ionization chamber includes an extraction aperture for extracting an ion beam. The ion source, in accordance with the preset invention, is configured to be able to be retrofit into the design space of existing ion sources in, for example, Bernas source-based ion implanters.
摘要:
The fault detecting apparatus comprises an electro optical lens-barrel having a rectangular cathode (101), three four-pole lenses (117, 119, 121), and a deflector (129). The four-pole lenses are controlled to form such a rectangular beam that a ratio of a reduction ratio at the sample surface of an electron beam locus along a longitudinal direction of the rectangular cathode to a reduction ratio at the sample surface of an electron beam locus along a lateral direction of the rectangular cathode becomes equal to a ratio of a length to a width of the rectangular cathode and in addition a width of the beam is equal to a required minimum fault detection width. Further, the deflector (129) is controlled by a deflection controller (130) in such a way that the rectangular beam can be scanned (raster scanning) by moving the rectangular beam at every scanning stroke corresponding to the minimum fault detection width in both the longitudinal and lateral directions of the rectangular beam.
摘要:
Provided is a device for optimizing a diffusion section of an electron beam, comprising two groups of permanent magnets, a magnetic field formed by the four magnetic poles extending the electron beam in a longitudinal direction, and compressing the electron beam in a transverse direction, so that the electron beam becomes an approximate ellipse; another magnetic field formed by the eight magnetic poles optimizing an edge of a dispersed electron-beam bunch into an approximate rectangle; by controlling the four longitudinal connection mechanisms so that the upper magnetic yoke and the lower magnetic yoke of the first group of permanent magnets move synchronously towards the center thereof thereby longitudinally compressing the electron beam in the shape of an approximate ellipse, and the upper magnetic yoke and the lower magnetic yoke of the second group of permanent magnets move synchronously towards the center thereof thereby longitudinally compressing the electron beam in the shape of an approximate rectangle, and the process of longitudinal compression is repeated until a longitudinal size of the electron-beam bunch is reduced to 80 mm. The invention is capable of reasonably compressing a longitudinal size of an electron-beam bunch after diffusion to approximately 80 mm, which ensures optimum irradiation uniformity and efficiency, and enables the longitudinal size to be within the range of a conventional titanium window,
摘要:
A method for an ion implantation is provided. First, a non-parallel ion beam is provided. Thereafter, a relative motion between a workpiece and the non-parallel ion beam, so as to enable each region of the workpiece to be implanted by different portions of the non-parallel ion beam successively. Particularly, when at least one three-dimensional structure is located on the upper surface of the workpiece, both the top surface and the side surface of the three-dimensional structure may be implanted properly by the non-parallel ion beam when the workpiece is moved across the non-parallel ion beam one and only one times. Herein, the non-parallel ion beam can be a divergent ion beam or a convergent ion beam (both may be viewed as the integrated divergent beam), also can be generated directly from an ion source or is modified from a parallel ion beam, a divergent ion beam or a convergent ion beam.
摘要:
This VSB lithography system includes a first, second and third aperture for forming a single electron beam in each of the rectangular opening portion that are provided, and draws a figure pattern using the single electron beam formed by passing the beam through the first, second and third aperture in sequence. Each of the first, second and third aperture has a mechanism for rotationally driving the aperture around an optical axis up to an arbitrary angle from 0 to 360°. Further, in the third aperture, a mechanism for varying the opening slit width of the rectangular opening portion is provided.