Abstract:
The present invention relates to methods and compositions for transforming soybean, corn. cotton, or canola explants using spectinomycin as a selective agent for transformation of the explants. The method may further comprise treatment of the explants with cytokinin during the transformation and regeneration process.
Abstract:
This disclosure is related to plant-optimized recombinant nucleic acids encoding Cpf1 and their use in planta. Also disclosed are compositions, expression cassettes, and plant cells comprising the recombinant nucleic acids as well as methods and kits for modifying a target sequence in a plant genome using the recombinant nucleic acids.
Abstract:
The invention provides methods and compositions for identifying transgenic seed that contain a transgene of interest, but lack a marker gene. Use of an identification sequence that results in a detectable phenotype increases the efficiency of screening for seed and plants in which transgene sequences not linked to a gene of interest have segregated from the sequence encoding a gene of interest.
Abstract:
The present invention relates to methods and compositions for improving the efficiency of Agrobacterium- and Rhizobium-mediated plant cell transformation by use of additional transformation enhancer sequences, such as overdrive or TSS sequences, operably linked to a T-DNA border sequence on a recombinant construct that comprises T-DNA.
Abstract:
The invention relates to methods for Rhizobia-mediated genetic transformation of plant cells, including soybean, canola, corn, and cotton cells. These include both VirD2-dependent and VirD2-independent methods. Bacterial species utilized include strains of Rhizobium sp., Sinorhizobium sp., and Mesorhizobium sp. Vectors for use in such transformation are also disclosed.
Abstract:
The present invention relates to methods and compositions for transforming soybean, corn, cotton, or canola explants using spectinomycin as a selective agent for transformation of the explants. The method may further comprise treatment of the explants with cytokinin during the transformation and regeneration process.
Abstract:
This disclosure is related to plant-optimized recombinant nucleic acids encoding Cpf1 and their use in planta. Also disclosed are compositions, expression cassettes, and plant cells comprising the recombinant nucleic acids as well as methods and kits for modifying a target sequence in a plant genome using the recombinant nucleic acids.
Abstract:
The present invention relates to methods and compositions for transforming soybean, corn, cotton, or canola explants using spectinomycin as a selective agent for transformation of the explants. The method may further comprise treatment of the explants with cytokinin during the transformation and regeneration process.
Abstract:
Methods and compositions for improved bacterial-mediated plant transformation are provided. The methods generally allow plant transformation with reduced vector backbone integration and a high frequency of low-copy transformation events. Vectors for achieving these results are described, as are methods for their use.