摘要:
In a phase-change memory, an interface layer is inserted between a chalcogenide material layer and a plug. The interface layer is arranged so as not to cover the entire interface of a plug-like electrode. When the plug is formed at an upper part than the chalcogenide layer, the degree of integration is increased. The interface layer is formed by carrying out sputtering using an oxide target, or, by forming a metal film by carrying out sputtering using a metal target followed by oxidizing the metal film in an oxidation atmosphere such as oxygen radical, oxygen plasma, etc.
摘要:
A phase change memory is formed of a plug buried within a through-hole in an insulating film formed on a semiconductor substrate, an interface layer formed on the insulating film in which the plug is buried, a recording layer formed of a chalcogenide layer formed on the interface layer, and an upper contact electrode formed on the recording layer. The recording layer storing information according to resistance value change is made of chalcogenide material containing indium in an amount range from 20 atomic % to 38 atomic %, germanium in a range from 9 atomic % to 28 atomic %, antimony in a range from 3 atomic % to 18 atomic %, and tellurium in a range from 42 atomic % to 63 atomic %, where the content of germanium larger than or equal to the content of antimony.
摘要:
On an insulating film (41) in which a plug (43) as a lower electrode is embedded, a laminated layer pattern of an insulating film (51) made of tantalum oxide, a recording layer (52) made of Ge—Sb—Te based chalcogenide to which indium is introduced and an upper electrode film (53) made of tungsten or tungsten alloy is formed, thereby forming a phase change memory. By interposing the insulating film (51) between the recording layer (52) and the plug (43), an effect of reducing programming current of a phase change memory and an effect of preventing peeling of the recording layer (52) can be achieved. Further, by using the Ge—Sb—Te based chalcogenide to which indium is introduced as the recording layer (52), the difference in work function between the insulating film (51) and the recording layer (52) is increased, and the programming voltage of the phase change memory can be reduced.
摘要:
A phase change memory is formed of a plug buried within a through-hole in an insulating film formed on a semiconductor substrate, an interface layer formed on the insulating film in which the plug is buried, a recording layer formed of a chalcogenide layer formed on the interface layer, and an upper contact electrode formed on the recording layer. The recording layer storing information according to resistance value change is made of chalcogenide material containing indium in an amount range from 20 atomic % to 38 atomic %, germanium in a range from 9 atomic % to 28 atomic %, antimony in a range from 3 atomic % to 18 atomic %, and tellurium in a range from 42 atomic % to 63 atomic %, where the content of germanium larger than or equal to the content of antimony.
摘要:
On an insulating film (41) in which a plug (43) as a lower electrode is embedded, a laminated layer pattern of an insulating film (51) made of tantalum oxide, a recording layer (52) made of Ge—Sb—Te based chalcogenide to which indium is introduced and an upper electrode film (53) made of tungsten or tungsten alloy is formed, thereby forming a phase change memory. By interposing the insulating film (51) between the recording layer (52) and the plug (43), an effect of reducing programming current of a phase change memory and an effect of preventing peeling of the recording layer (52) can be achieved. Further, by using the Ge—Sb—Te based chalcogenide to which indium is introduced as the recording layer (52), the difference in work function between the insulating film (51) and the recording layer (52) is increased, and the programming voltage of the phase change memory can be reduced.
摘要:
Disclosed herein is a phase change memory semiconductor integrated circuit device using a chalcogenide film that solves a problem that the operation temperature capable of ensuring long time memory retention is low due to low phase change temperature is and, at the same time, a problem that power consumption of the device is high since a large current requires to rewrite memory information due to low resistance. A portion of constituent elements for a chalcogenide comprises nitride, oxide or carbide which are formed to the boundary between the chalcogenide film and a metal plug as an underlying electrode and to the grain boundary of chalcogenide crystals thereby increasing the phase change temperature and high Joule heat can be generated even by a small current by increasing the resistance of the film.
摘要:
Disclosed herein is a phase change memory semiconductor integrated circuit device using a chalcogenide film that solves a problem that the operation temperature capable of ensuring long time memory retention is low due to low phase change temperature is and, at the same time, a problem that power consumption of the device is high since a large current requires to rewrite memory information due to low resistance. A portion of constituent elements for a chalcogenide comprises nitride, oxide or carbide which are formed to the boundary between the chalcogenide film and a metal plug as an underlying electrode and to the grain boundary of chalcogenide crystals thereby increasing the phase change temperature and high Joule heat can be generated even by a small current by increasing the resistance of the film.
摘要:
The annealing process at 400° C. or more required for the wiring process for a phase change memory has posed the problem in that the crystal grains in a chalcogenide material grow in an oblique direction to cause voids in a storage layer. The voids, in turn, cause peeling due to a decrease in adhesion, variations in resistance due to improper contact with a plug, and other undesirable events. After the chalcogenide material has been formed in an amorphous phase, post-annealing is conducted to form a (111)-oriented and columnarly structured face-centered cubic. This is further followed by high-temperature annealing to form a columnar, hexagonal closest-packed crystal. Use of this procedure makes it possible to suppress the growth of inclined crystal grains that causes voids, since crystal grains are formed in a direction perpendicular to the surface of an associated substrate.
摘要:
The annealing process at 400° C. or more required for the wiring process for a phase change memory has posed the problem in that the crystal grains in a chalcogenide material grow in an oblique direction to cause voids in a storage layer. The voids, in turn, cause peeling due to a decrease in adhesion, variations in resistance due to improper contact with a plug, and other undesirable events. After the chalcogenide material has been formed in an amorphous phase, post-annealing is conducted to form a (111)-oriented and columnarly structured face-centered cubic. This is further followed by high-temperature annealing to form a columnar, hexagonal closest-packed crystal. Use of this procedure makes it possible to suppress the growth of inclined crystal grains that causes voids, since crystal grains are formed in a direction perpendicular to the surface of an associated substrate.
摘要:
Since a chalcogenide material has low adhesion to a silicon oxide film, there is a problem in that it tends to separate from the film during the manufacturing step of a phase change memory. In addition, since the chalcogenide material has to be heated to its melting point or higher during resetting (amorphization) of the phase change memory, there is a problem of requiring extremely large rewriting current. An interfacial layer comprising an extremely thin insulator or semiconductor having the function as both an adhesive layer and a high resistance layer (thermal resistance layer) is inserted between chalcogenide material layer/interlayer insulative film and between chalcogenide material layer/plug.