Abstract:
An active matrix liquid crystal display module (10) is contained in a base (20). Improved environmental sealing is provided by a primary seal (36) along the edge of the liquid crystal display module and a secondary seal (14a, 14b) at the base. The liquid crystal display module is affixed to a cover (12) which in turn is affixed to the base, such that the liquid crystal display module is suspended in a cavity (21) in the base, spaced apart from physical contact with the base. In this way, any thermomechanical stresses that may develop in the base are not transmitted to the liquid crystal display module. Thermal contact between the liquid crystal display module and the base is made via a thermally conductive material (19), to permit efficient heat dissipation.
Abstract:
An apparatus and method to treat vulnerable plaque. In one embodiment, the apparatus has a medical device to treat an occlusive plaque, and is also adapted to release a biologically active agent to treat vulnerable plaque located downstream from the occlusive plaque. In an alternative embodiment, the apparatus has an expandable tube attached to the inner surface of a stent, and a layer of endothelial cells seeded on the inner surface of the expandable tube. The expandable tube shields a vulnerable plaque from a body lumen.
Abstract:
A method of treating vulnerable plaque comprising intentionally damaging or rupturing the vulnerable plaque using a wingless balloon which is inflated from a wingless unexpanded diameter to a limited expanded diameter. This process produces significant increase in ECM synthesis at the site of the damage or rupture. As a result, the method strengthens the vulnerable plaque while minimizing or avoiding damage to the surrounding wall of the body lumen or damaging a stable plaque mistakenly believed to be a vulnerable plaque. The method of the invention is particularly useful in treating a fibroatheroma type of vulnerable plaque. In one embodiment, the balloon is self-limiting such that it expands compliantly at initial inflation pressures, and above nominal pressure it expands noncompliantly. In an alternative embodiment, the balloon is inflated using a diameter-limiting device, such as a device which limits the inflation pressure or the volume of inflation fluid in the balloon.
Abstract:
Methods, devices, kits and compositions to treat a myocardial infarction. In one embodiment, the method includes the prevention of remodeling of the infarct zone of the ventricle. In other embodiments, the method includes the introduction of structurally reinforcing agents. In other embodiments, agents are introduced into a ventricle to increase compliance of the ventricle. In an alternative embodiment, the prevention of remodeling includes the prevention of thinning of the ventricular infarct zone. In another embodiment, the prevention of remodeling and thinning of the infarct zone involves the cross-linking of collagen and prevention of collagen slipping. In other embodiments, the structurally reinforcing agent may be accompanied by other therapeutic agents. These agents may include but are not limited to pro-fibroblastic and angiogenic agents.
Abstract:
The present invention relates to an implantable medical device comprising therapeutic agents coated on the device using polyesters for the drug reservoir layer that exhibit surface-eroding characteristics.
Abstract:
Methods, devices, kits and compositions to treat a myocardial infarction. In one embodiment, the method includes the prevention of remodeling of the infarct zone of the ventricle. In other embodiments, the method includes the introduction of structurally reinforcing agents. In other embodiments, agents are introduced into a ventricle to increase compliance of the ventricle. In an alternative embodiment, the prevention of remodeling includes the prevention of thinning of the ventricular infarct zone. In another embodiment, the prevention of remodeling and thinning of the infarct zone involves the cross-linking of collagen and prevention of collagen slipping. In other embodiments, the structurally reinforcing agent may be accompanied by other therapeutic agents. These agents may include, but are not, limited to pro-fibroblastic and angiogenic agents.
Abstract:
Methods, devices, kits and compositions to treat a myocardial infarction. In one embodiment, the method includes the prevention of remodeling of the infarct zone of the ventricle. In other embodiments, the method includes the introduction of structurally reinforcing agents. In other embodiments, agents are introduced into a ventricle to increase compliance of the ventricle. In an alternative embodiment, the prevention of remodeling includes the prevention of thinning of the ventricular infarct zone. In another embodiment, the prevention of remodeling and thinning of the infarct zone involves the cross-linking of collagen and prevention of collagen slipping. In other embodiments, the structurally reinforcing agent may be accompanied by other therapeutic agents. These agents may include but are not limited to pro-fibroblastic and angiogenic agents.
Abstract:
An apparatus and method to treat vulnerable plaque. In one embodiment, the apparatus has an elongated catheter body adapted for insertion in a body lumen, with a drug delivery device attached near a distal portion of the elongated body. The drug delivery device is configured to deliver a biologically active agent to stabilize a vulnerable plaque.
Abstract:
An apparatus and method to treat vulnerable plaque. In one embodiment, the apparatus has a medical device to treat an occlusive plaque, and is also adapted to release a biologically active agent to treat vulnerable plaque located downstream from the occlusive plaque. In an alternative embodiment, the apparatus has an expandable tube attached to the inner surface of a stent, and a layer of endothelial cells seeded on the inner surface of the expandable tube. The expandable tube shields a vulnerable plaque from a body lumen.
Abstract:
A medical device comprising a substrate having a plasma polymerized functionality bonded to at least a portion of the substrate. A superoxide dismutase mimic agent having a complimentary functional group to the plasma polymerized functionality is bonded to the portion of the substrate by bonding to the plasma polymerized functionality.