Abstract:
An infrared reflective material, a method for producing the same, and an infrared reflective structure are provided. The method includes a preparation step implemented by mixing antimony and zirconium tungstate through a sol-gel manner to form zirconium tungstate composite powders doped with the antimony; a sintering step implemented by sintering the antimony and the zirconium tungstate in the zirconium tungstate composite powders doped with the antimony in a temperature gradient within a range from 500° C. to 1,100° C. for a predetermined time period, so that the antimony and the zirconium tungstate in the zirconium tungstate composite powders doped with the antimony bond together to form into composite tungsten oxide powders; a grinding step implemented by grinding the composite tungsten oxide powders; and a mixing step implemented by mixing the composite tungsten oxide powders that are grinded into an acrylic resin to form the infrared reflective material.
Abstract:
A method for preparing an aqueous polyurethane dispersion includes the following steps. The method characterized in that it introduces an ethoxy group to sodium ethylenediamine sulfonate (H2N—CH2CH2NHCH2CH2SO3Na) serving as an anionic chain extender to form sodium ethylenediamino ethoxyethyl sulfonate (H2NCH2CH2NHCH2CH2OCH2CH2SO3Na). Next, hydrophilic groups of sodium ethylenediamino ethoxyethyl sulfonate are used to prepare an aqueous polyurethane to improve the flowability of the resin, in which the polyurethane prepolymer has an isocyanate group at its end. More than one acrylate monomer is used for dilution and reduction of viscosity, and hydrophilic and amine groups containing sulfonate is used for water dispersion and to carry out a chain extension reaction. After that, an initiator is added for acrylic polymerization, so as to modify polyurethane with graft acrylic.
Abstract:
A curing agent and method for producing the same are provided, the method includes: esterification reaction: reacting a polyhydric alcohol with a polybasic acid anhydride to obtain an ester-based emulsifier (A); chain extension reaction: reacting an ester-based emulsifier (A) with a bifunctional epoxy resin to obtain a polymer intermediate (B); and reacting the polymer intermediate (B) with a polyamine compound to obtain a curing agent (C).
Abstract:
Provided are a preparation method of an ion catalyst material for PET chemical recycling and a PET chemical recycling method. The preparation method of an ion catalyst material for PET chemical recycling includes the following. A metal chloride is added to an alkylimidazole-chloride ionic liquid to form a bisalkylimidazole-metal tetrachloride ionic liquid that is grafted on a porous carrier.
Abstract:
A transparent heat-shielding material having a chemical formula CsXNYWO3-ZClC, characterized by being co-doped with elements of different groups in the periodic table, wherein Cs is cesium; N is tin (Sn) or antimony (Sb) or bismuth (Bi); W is tungsten; O is oxygen; and X, Y, Z, and C are positive numbers satisfying the following conditions: X≦1.0, Y≦1.0, Y/X≦1.0, Z≦0.6, and C≦0.1; the transparent heat-shielding material is used to make a highly transparent and highly effective heat-shielding film which can be adhered to glass panels of buildings and automobiles to block infrared radiation in the wavelength range of 800-2000 nm, thereby insulating heat and saving energy; and the film is also applicable as a composite substrate for electronic components.
Abstract:
An ionic liquid catalyst and a method for manufacturing the same are provided. The ionic liquid catalyst includes a carrier. The carrier contains nickel ferrite as a component, and an outer surface of the carrier is modified to have a decolorant and a degradation agent. The decolorant is grafted onto nickel atoms of the carrier, and the degradation agent is grafted onto iron atoms of the carrier. The method includes: providing the carrier that contains nickel ferrite as a component; and modifying the carrier, so that the nickel atoms of the carrier are grafted with the decolorant and the iron atoms of the carrier are grafted with the degradation agent. Accordingly, the ionic liquid catalyst is obtained.
Abstract:
A biodegradable additive, a biodegradable polyester fiber and a method for producing the same, and a biodegradable fabric are provided. The biodegradable additive includes a polyester resin material and a biodegradable resin material. The biodegradable resin material is at least one material selected from the group consisting of polybutylene succinate (PBS), polybutylene adipate terephthalate (PBAT), polycaprolactone (PCL), polylactic acid (PLA), and derivatives thereof. In the biodegradable additive, a content range of the polyester resin material is between 40 wt % and 80 wt %, and a content range of the biodegradable resin material is between 20 wt % and 60 wt %.
Abstract:
A release film is provided for supporting an ultrathin ceramic green sheet having a thickness of 0.5 to 1.0 μm, and the release film due to containing modified organic particles and an antistatic agent has a slippery releasing surface with a low friction coefficient and hence excellent coatability and releasing properties; resulted in that when the release film is rolled up, the rolled surfaces do not adhere to each other, and when the ultrathin ceramic green sheet is peeled off from the release film, the ultrathin ceramic green sheet due to a relatively small electrostatic force being generated is without breaking; so that the release film contributes to increasing the yield of ultrathin ceramic green sheet.
Abstract:
A curing agent composition and a curing agent coating formula thereof are provided. The curing agent composition includes 5 to 25 wt % of an ester group-containing amine end group adduct, 2 to 25 wt % of a C8-C22 hydrophobic saturated or unsaturated fatty amine, 2 to 25 wt % of a polyamine compound, 2 to 20 wt % of a silane compound, and 10 to 60 wt % of an ether solvent.
Abstract:
A method for manufacturing high heat resistant and high scratch resistant water-based polyurethane, which can improve the mechanical strength and water resistance of water-based polyurethane by using acrylate graft modification, is provided. In particular, 2-hydroxyethyl acrylate (2-HEA), methyl methacrylate (MMA), ethyl acrylate (EA), acrylic acid (AA), glycidyl methacrylate (GMA) and triallyl isocyanuric acid ester (TAIC) are used to dilute polyurethane prepolymer. As a result, the prepolymer has a good dispersing effect, and further, waterborne bridging agent and cellulose nanofiber are added to the water-based polyurethane to obtain water-based polyurethane which has high heat resistance and scratch resistance.