Abstract:
Provided is a method of varying the gain of an amplifying photoelectric conversion device and a variable gain photoelectric conversion device which are capable of achieving both signal processing under low illuminance and high-current processing under high light intensity, and thereby capable of securing a wide dynamic range. An amplifying photoelectric conversion part includes a photoelectric conversion element and amplification transistors forming a Darlington circuit. The sources and the drains of field-effect transistors are connected to the bases and the emitters of the amplification transistors, respectively. The gates of the field-effect transistors each function as a gain control part.
Abstract:
An object of the present invention is to amplify the current which varies by a factor of several orders of magnitude with a constant gain without using a complicated circuit. In order to solve the problem, with a semiconductor device includes a first semiconductor region of a first conductivity, a second semiconductor region which is an opposite conductivity opposite to the first conductivity and is in contact with the first semiconductor region and a third semiconductor region which is the first conductivity and is in contact with the second semiconductor region at the second surface, a fourth semiconductor region in contact with the second semiconductor region is provided so as to be separated from the third semiconductor region and enclose the third semiconductor region and an impurity concentration of the fourth semiconductor region is larger than that of the second semiconductor region.
Abstract:
Expansion of the dynamic range was difficult in conventional amplifying photoelectric conversion devices designed to have a large gain because, when used for high input light intensity, the electric current exceeds the electric current capacity of a near-minimum sized transistor obtained with the design rules. Also, in conventional photoelectric conversion devices, techniques for varying the electric signal outputs in real-time at the device level are necessary for real-time import of observation targets or images having a high contrast ratio and for visualization of local areas in real-time. In order to solve this problem, the present invention provides a gain varying method, a variable gain photoelectric conversion device, a photoelectric conversion cell, a photoelectric conversion array, a read-out method thereof, and a circuit therefor in which amplifying photoelectric conversion devices and field-effect transistors are combined.
Abstract:
A reset method of an photoelectric conversion device at least including a phototransistor having a first collector, a first base, and a first emitter, and a first field-effect transistor having a first source, a first drain, and a first gate, includes: connecting the first base, and one of the first source and the first drain of the first field-effect transistor by having a common region, or a continuous region, without a base electrode; supplying a base reset potential to the other of the first source and the first drain; and overlapping a time in which a first emitter potential is supplied to the first emitter and a time in which a first ON-potential that turns on the first field-effect transistor is supplied to the first gate.
Abstract:
An object of the present invention is to amplify the current which varies by a factor of several orders of magnitude with a constant gain without using a complicated circuit. In order to solve the problem, with a semiconductor device includes a first semiconductor region of a first conductivity, a second semiconductor region which is an opposite conductivity opposite to the first conductivity and is in contact with the first semiconductor region and a third semiconductor region which is the first conductivity and is in contact with the second semiconductor region at the second surface, a fourth semiconductor region in contact with the second semiconductor region is provided so as to be separated from the third semiconductor region and enclose the third semiconductor region and an impurity concentration of the fourth semiconductor region is larger than that of the second semiconductor region.
Abstract:
A photoelectric converter includes a first pn junction comprised of at least two semiconductor regions of different conductivity types, and a first field-effect transistor including a first source connected with one of the semiconductor regions, a first drain, a first insulated gate and a same conductivity type channel as that of the one of the semiconductor regions. The first drain is supplied with a second potential at which the first pn junction becomes zero-biased or reverse-biased relative to a potential of the other of the semiconductor regions. When the first source turns to a first potential and the one of the semiconductor regions becomes zero-biased or reverse-biased relative to the other semiconductor regions, the first pn junction is controlled not to be biased by a deep forward voltage by supplying a first gate potential to the first insulated gate, even when either of the semiconductor regions is exposed to light.
Abstract:
Expansion of the dynamic range was difficult in conventional amplifying photoelectric conversion devices designed to have a large gain because, when used for high input light intensity, the electric current exceeds the electric current capacity of a near-minimum sized transistor obtained with the design rules. Also, in conventional photoelectric conversion devices, techniques for varying the electric signal outputs in real-time at the device level are necessary for real-time import of observation targets or images having a high contrast ratio and for visualization of local areas in real-time. In order to solve this problem, the present invention provides a gain varying method, a variable gain photoelectric conversion device, a photoelectric conversion cell, a photoelectric conversion array, a read-out method thereof, and a circuit therefor in which amplifying photoelectric conversion devices and field-effect transistors are combined.
Title translation:通过使用含有含氢的化学或化学物质和/或含有含氧氧化剂或氧化物和有机碳类似物或类似物的混合物来处理有机相物质的方法和/或用于提取或沉积重质元素和/或有机成分的方法 通过使用含有氢的化学或化学物质和/或含有含氧氧化物或氧化物和有机碳类似物或类似物的混合物和有机相物质的有机物质和/或无机物质,以及使用该方法和有机相物质的植物
Abstract:
The invention provides a processing method for upgrading an organic phase substance by removing heavy element species from the organic phase substance originating from a resource substance in mild environmental conditions, and further provides a method for collecting removed heavy element species and a method for collecting other substances.The invention is constituted of a method for processing an organic phase substance, including: allowing an organic phase substance to coexist with a water phase, wherein the organic phase substance contains at least organic components originating from one or more selected from crude oil, bitumen, tar, residual fuel oil, petroleum residue, oil sands, tar-sand, asphaltene, fossil strata, cokes, oil-shale and coal, and contacting resultant of the above coexistence with halogen-containing chemical or chemicals, thereby extracting or depositing the heavy element species from the organic phase substance into the water phase; a plant for the method; and substances collected by the method.