Abstract:
A problem to be solved is to optimize a storage schedule in which changes in power (W) stored in an energy storage apparatus with time are determined, and an output upper limit (W) of a renewable energy power supply. In order to solve the problem, the invention provides a power control apparatus (10) that stores in an energy storage apparatus an amount of power exceeding an output upper limit instruction value (W), which is determined by an electricity company in power (W) generated by a power generation apparatus, the power control apparatus (10) including a decision unit (11) that decides a storage schedule in which changes in the power (W) to be stored in the energy storage apparatus with time within a predetermined period of time are determined, on the basis of prediction data on changes in the power (W) generated by the power generation apparatus with time within the predetermined period of time and values of various types of power classified on the basis of the output upper limit instruction value (W) within the predetermined period of time.
Abstract:
A monitoring device (10) includes a unit-specific waveform data acquisition unit (11) that acquires waveform data in a unit in which electrical devices are installed; a first inference unit (13) that infers change in operation states of at least some of the electrical devices based on a first monitoring difference group including at least one of at least one kind of feature amount extracted from waveform data of a difference between waveform data of a first timing and waveform data of a second timing in the waveform data, and a differences of at least one kind of feature amounts extracted from the waveform data of the first timing and the waveform data of the second timing, and training difference information regarding a difference between a first operation state and a second operation state of each of the electrical devices; and a second inference unit (14) that infers an operation state of each of the electrical devices based on an inference result of the first inference unit (13).
Abstract:
An object of the present invention is to improve the accuracy of prediction in a technique for predicting natural energy power generation amount, solar radiation amount or wind speed by using a statistical method based on machine learning. In order to achieve this object, provided is a prediction apparatus (10) including a feature value extraction unit (13) that extracts a feature value being a variation in time series from meteorological data from m (m is 2 or more) hours before a target time to the target time, and an estimation unit (first estimation unit (14)) that estimates a natural energy power generation amount, a solar radiation amount, or a wind speed at the target time based on the feature values over plural days.
Abstract:
A training data generation device (10) includes: a measurement data acquisition unit (11) that acquires measurement data including waveform data including at least one of a current consumption waveform, an input voltage waveform, and a power consumption waveform along a time axis of an electrical device and power consumption value data indicating time-series power consumption values of the electrical device; an analysis unit (12) that analyzes a rate of occurrence of each power consumption value using the power consumption value data; a specifying unit (13) that specifies one or more specific power consumption value bands including a power consumption value with the higher rate of occurrence than that of a standard power consumption value and having a predetermined power value width; a feature amount extraction unit (14) that determines a representative power value for each specific power consumption value band and extracts a feature amount using the waveform data; and a storage unit (15) that stores a pair of the representative power value determined based on each specific power consumption value band and a training feature amount which is the feature amount in association with the electrical device.
Abstract:
An electric power generation control device is provided with: a communication unit that receives an output upper-limit value in a power generation device group and a predicted amount of power generation of each power generation device that belongs to the power generation device group; and a determination unit that, on the basis of the output upper-limit value and the predicted amount of power generation of each power generation device, determines a first output upper-limit value of each power generation device that makes the sum total of the output of each power generation device equal to or less than the output upper-limit value.
Abstract:
A time range setting unit (110) sets an operation startable time point at which an operation can be started and a target operation end time point which is the latest time point among time points at which the operation is to be ended, with respect to each of plural power demanding objects (20). A necessary operation time setting unit (120) sets a necessary operation time with respect to each of the plural power demanding objects (20). A shape information acquisition unit (130) acquires shape information from a schedule management device (40). The shape information indicates an assumed shape of a transition line that represents transition in the amount of supplied power in a target period. A demand transition setting unit (140) sets power demand transition information indicating transition in an electric energy demand in the target period so that the necessary operation time is obtained and so that the transition in the electric energy demand generated by the plural power demanding objects (20) being operated accords with the assumed shape.
Abstract:
A control device for controlling the operation of a supply and demand adjustment device that is connected to a power grid includes: detection means for detecting the state of the supply and demand adjustment device; communication means for transmitting the detection result of the detection means to an external device and receiving from the external device operation control information for controlling the operation of the supply and demand adjustment device; comprehension means for receiving and comprehending an adjustment power amount transmitted by bidirectional communication or one-way communication; and control means for, based on the adjustment power amount and the operation control information, controlling the operation of the supply and demand adjustment device.
Abstract:
A data management system is provided with: a storage unit for storing examination information including at least an examination item, an examination location, a consultation location, and a required examination time, the examination item including examination names of a plurality of examinations; an acquisition unit for acquiring patient information relating to severity and an identifier for identifying the patient to be examined; a calculation unit for calculating, in accordance with the patient, the necessary travel time for traveling from the examination location or consultation location at which a completed examination or consultation was performed to the next examination location or consultation location at which the next examination or consultation subsequent to the examination or consultation is to be performed, based on the patient information and the examination information; and a generating unit for generating a patient examination schedule based on the examination information, the patient information, and the travel time.
Abstract:
A power generation control device is provided with: a communication unit that receives output control information determined on the basis of a first index that relates to the output state at a power generation device group and a second index that relates to the output state at a predetermined power generation device; and a control unit that controls the output of the predetermined power generation device on the basis of the output control information.
Abstract:
A monitoring device (10) includes a feature amount storage unit (11) that stores a device feature amount which is a feature amount of each of a plurality of electrical devices installed in a predetermined unit in operation; a measured data acquisition unit (12) that acquires measured data of the predetermined unit which is at least one of a total current consumption, a total power consumption, and a voltage measured in the predetermined unit; a feature amount extraction unit (13) that acquires a measurement feature amount which is the feature amount included in the measured data of the predetermined unit; a correction unit (15) that corrects a first feature amount which is the device feature amount or the measurement feature amount based on unit feature information indicating a feature of the predetermined unit; and a presumption unit (16) that presumes the electrical device being in operation using the corrected first feature amount, and a second feature amount which is the device feature amount or the measurement feature amount, and a different feature amount from the first feature amount.